K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

Đáp án A

Phương pháp:

Gọi đường thẳng cần tìm là d’

 Tìm tọa độ điểm A.

n d ' → = u d → ; n ( α ) →  là 1 VTCP của đường phẳng d’

Cách giải:

Gọi d’ là đường thẳng cần tìm, 

Ta có

=> A (2;4;4)

là một VTCP của d'

Kết hợp với d’ qua A(2;4;4) 

25 tháng 3 2019

Chọn C

Phương trình tham số của đường thẳng 

I d => I (1+t;2+2t;3+t)

I (α) => 1 + t + 2 + 2t – (3 + t) -2 = 0 ó t = 1 =>  I (2;4;4).

Đường thẳng cần tìm qua điểm I (2;4;4), nhận một VTCP là  nên có PTTS 

Kiểm tra , thấy A (5;2;5) thỏa mãn phương trình (*). Vậy chọn C.

26 tháng 11 2018

Chọn C

Phương trình tham số của đường thẳng

I d => I (1 + t; 2 + 2t; 3+ t), I (α) => 1 + t + 2 + 2t – (3 + t) - 2 = 0 ó t = 1 => I (2; 4; 4)

Vectơ chỉ phương của d

Vectơ chỉ pháp tuyến của (α) 

Ta có

Đường thẳng cần tìm qua điểm I (2; 4; 4), nhận một VTCP là  nên có

Kiểm tra A (5; 2; 5) Δ3  (với t = -1) , thấy A (5; 2; 5) thỏa mãn phương trình (*)

21 tháng 5 2018

6 tháng 4 2019

Đáp án B.

12 tháng 12 2017

Đáp án B

Phương pháp:

thay tọa độ điểm B vào phương trình  ( α ) => 1 phương trình 2 ẩn a, b.

 Sử dụng công thức tính khoảng cách

 lập được 1 phương trình 2 ẩn chứa a, b.

+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.

Dế thấy 

Ta có 

Lại có

Đường thẳng d đi qua M(0;0;-1), có  u → = ( 1 ; 2 ; 2 )

 

Do đó

 

 

Vậy AB =  7 2

28 tháng 5 2021

\(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{-2}\) có VTCP \(\overrightarrow{u}\left(1;2;-2\right)\)

Mặt phẳng \(\left(Oxz\right)\)có VTPT \(\overrightarrow{j}\left(0;1;0\right)\)

Mặt phẳng (P) chứa d và vuông góc với (Oxz) nên VTPT của (P) là:

\(\overrightarrow{n}=\left[\overrightarrow{u},\overrightarrow{j}\right]=\left(2;0;1\right)\)

Mặt phẳng (P): điểm \(M\left(0;-1;1\right)\in d\subset\left(P\right)\), VTPT \(\overrightarrow{n}\left(2;0;1\right)\)

\(\Rightarrow\left(P\right):2x+z-1=0\)

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12

24 tháng 8 2019

Ta có: d (α) nên d và ∆ song song với nhau và cùng nằm trong mặt phẳng (α). 

3 tháng 6 2017

Chọn A

 

Cách 1: Ta có: B Oxy và B (α) nên B (a ; 2 – 2a ; 0).

 đi qua M (-1 ; -2 ; -3) và có một véctơ chỉ phương

 

Ta có: d (α) nên d Δ song song với nhau và cùng nằm trong mặt phẳng (α).

Gọi C  = d (Oxy) nên

Gọi d’ = (α) (Oxy), suy ra d’ thỏa hệ

Do đó, d’ qua  và có VTCP

Gọi φ = (Δ, d’) = (d, d’)

Gọi H là hình chiếu của C lên Δ. Ta có CH = 3

 

 

Cách 2: Ta có:  đi qua M (-1 ; -2 ; -3) và có một VTCP là

Ta có: B = Δ (Oxy), Δ (α) nên B (Oxy) (α) => B (a; 2 – a; 0)

Ta có: Δ  // d d (Δ, d) = 3 nên