K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

24 tháng 12 2017

Chọn A

Cách giải:

Gọi B là điểm tiếp xúc của mặt cầu (S) và mặt phẳng (P)

=> IB=R

Gọi H là hình chiếu của A xuống (P)

15 tháng 7 2017

Đáp án A

Phương trình mặt phẳng A B C : x a + y b + z c = 1  

Vì I ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 6 a b c 3 ⇔ a b c ≥ 162  

Thể tích khối tứ diện OABC được tính là V = O A . O B . O C 6 = a b c 6 ≥ 162 6 = 27  

Dấu “=” xảy ra khi 1 a = 2 b = 3 c = 1 3 ⇒ a = 3 b = 6 c = 9  

Kiểm tra thấy phương án A không đúng

18 tháng 9 2017

Đáp án C.

Ta có B C →   = - 2 ; - 1 ; - 2  nên phương trình đường thẳng BC là x = 1 - 2 t y = - t   ( t ∈ ℝ ) z = 2 - 2 t  .

Gọi I là hình chiếu vuông góc của A trên BC, H là hình chiếu vuông góc của A trên mặt phẳng (P) . Khi đó A H   =   d A ; P ≤ A I  và AH đạt giá trị lớn nhất khi H ≡ I . Suy ra mặt phẳng (P) qua I và vuông góc với AI.

Từ I ∈ B C ⇒ I 1 - 2 t ; - t ; 2 - 2 t  và A I   → = - 1 - 2 t ; - t - 5 ; - 1 - 2 t  .

Lại có A I ⊥ B C ⇔ A I   → . B C   → = 0 ⇔ 2 ( 1 + 2 t ) + ( t + 5 ) + 2 ( 1 + 2 t ) = 0 ⇔ t = - 1 .

Mặt phẳng (P) đi qua I(3;1;4) và nhận VTPT là A I   → = 1 ; - 4 ; 1  nên có phương trình tổng quát là: x - 4 y + z - 3 = 0 .

Vậy a = 1 , b = - 4 , c = 1 , d = - 3 → M = 1 + 1 - 4 - 3 = - 2 7 .

16 tháng 3 2019

11 tháng 10 2018

Phương trình mặt chắn của mặt phẳng (ABC) là: 

Từ giả thiết  Kết hợp với a > 0, b > 0, c > 0 suy ra mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ là  1 2 ; 1 2 ; 1 2 . Chọn C.

3 tháng 8 2017

Đáp án A

Phương pháp:

+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn, thay tọa độ điểm M vào pt mặt phẳng (ABC).

+) (ABC) tiếp xúc với mặt cầu (S) tâm I bán kính R ó d(I;(ABC)) = R

Cách giải:

(ABC) tiếp xúc với mặt cầu (S) có tâm I(1;2;3) và bán kính  R = 72 7

13 tháng 8 2018

15 tháng 8 2019