Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Vì N = Δ ∩ d nên N ∈ d, do đó N(-2+2t; 1+t; 1-t). Mà A (1;3;2) là trung điểm MN nên
Vì M = Δ ∩ (P) nên M ∈ (P), do đó 2(4-2t)-(5-t)+(3+t)-10=0 ⇔ t= -2.
Suy ra M (8;7;1) và N (-6;-1;3).
Đáp án A.
Dựng hình lập phương nhận A, B là tâm của hình vuông của hai mặt đối diện. Chọn tia Ax, By và M, N như hình vẽ.
Đáp án A
Gỉa sử Khi đó
Hơn nữa, Suy ra
Tìm được M(1;-1), N(3;-3) => I(-1;1).
Phương trình đường thẳng SB: x - t, y = 2t, z = 2 - 2t. Để tìm B' ta giải hệ
Tương tự, C'(0; 1; 1)
Chọn C
Do tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc và H là trực tâm tam giác ABC nên
Phương trình mặt phẳng (ABC) là hay 6x + 4y + 3z - 12 = 0
Vì nên đường thẳng OH có véc-tơ chỉ phương
Mà đường thẳng OH đi qua O nên phương trình tham số của đường thẳng OH là:
Gọi \(I=AM\cap BN\), \(\Delta BIM\) đồng dạng \(\Delta ABM\)
suy ra \(AM\perp BN\) nên \(BN:-2x-y+c=0\)
\(N\left(0;-2\right)\Rightarrow c=-2\Rightarrow BN:2x-y-2=0\)
Tọa độ điểm I là nghiệm hệ phương trình :
\(\begin{cases}x+2y-2=0\\2x-y-2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}\) \(\Rightarrow I\left(\frac{6}{5};\frac{2}{5}\right)\)
Từ \(\Delta ABM\) vuông : \(BI=\frac{AB.BM}{\sqrt{AB^2+BM^2}}=\frac{4}{\sqrt{5}}\)
Tọa độ điểm \(B\left(x;y\right)\) thỏa mãn \(\begin{cases}B\in BN\\BI=\frac{4}{\sqrt{5}}\end{cases}\) \(\Rightarrow\begin{cases}2x-y-2=0\\\left(\frac{6}{5}-x\right)^2+\left(\frac{2}{5}-y\right)^2=\frac{16}{5}\end{cases}\)
Giải hệ ta được \(\begin{cases}x=2\\y=2\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{-6}{5}\end{cases}\) Suy ra \(B\left(2;2\right)\) Loại \(\left(\frac{2}{5};-\frac{6}{5}\right)\)
Tọa đọ M(x;y) thỏa mãn \(\begin{cases}M\in AM\\IM=\sqrt{BM^2-BI^2}\end{cases}\) \(\Rightarrow\begin{cases}x+2y-2=0\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=\frac{4}{5}\end{cases}\)
Giải hệ ta được : \(\begin{cases}x=2\\y=0\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{4}{5}\end{cases}\) suy ra \(M_1\left(2;0\right);M_2\left(\frac{2}{5};\frac{4}{5}\right)\)