K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

Góc A = C = 1200 
Góc B = D = 600

16 tháng 11 2021

Vì ABCD là hbh nên AD//BC \(\Rightarrow\widehat{A}+\widehat{B}=180^0\Rightarrow3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\Rightarrow\widehat{A}=120^0\)

Vì ABCD là hbh nên \(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=60^0\\\widehat{A}=\widehat{C}=120^0\end{matrix}\right.\)

16 tháng 11 2021

Vì ABCD là hình bình hành nên ˆA=ˆCA^=C^ và ˆB=ˆDB^=D^ (tính chất)

Áp dụng định lý tổng các góc trong một tứ giác ta có:

a: \(\widehat{C}=\widehat{A}=110^0\)

\(\widehat{B}=\widehat{D}=180^0-110^0=70^0\)

b: Sửa đề: Cm tứ giác AECF là hình bình hành

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

c: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của AC

Ta có: AECF là hình bình hành

nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của FE

11 tháng 7 2017

hình tự vẽ

Gọi giao điểm của AC và BD là O => O là trung điểm của AC, BD => AO=OC;BO=OD

từ điểm O hạ OO' vuông góc với xy tại O' => OO'//DD' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{DD'y}=90^o\))

AO=OC;OO'//DD' => OC là đường trung bình của tứ giác BB'DD' => \(OC=\frac{1}{2}\left(BB'+DD'\right)\)(1)

Mặt khác: BO=OD; OO'//AA' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{AA'y}=90^o\))

=>OC là đường trung bình của tam giác AA'C => \(OC=\frac{1}{2}AA'\)(2)

Từ (1) và (2) => \(\frac{1}{2}AA'=\frac{1}{2}\left(BB'+DD'\right)\Leftrightarrow AA'=BB'+DD'\)(đpcm)

11 tháng 7 2017

ý lộn, đường trung bình của hình thang BB'DD' nhé chứ ai lại nói tứ giác bao giờ 

6 tháng 11 2016

Đây :) 

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A