K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a, Tại \(\alpha  = \frac{\pi }{2}\) thì H trùng I, M trùng O nên MH = OI do đó OM = IH.

Xét tam giác AHI vuông tại H có: \(IH = cos\alpha .IA = 8cos\alpha .\)

\( \Rightarrow {x_M} = OM = IH = 8cos\alpha \)

b, Sau khi chuyển động được 1 phút, trục khuỷu quay được một góc là \(\alpha \)

Khi đó \({x_M} =  - 3cm \Rightarrow cos\alpha  =  - \frac{3}{8}\)

Sau khi chuyển động 2 phút, trục khuỷu quay được một góc \(2\alpha \), nên:

\({x_M} = 8cos2\alpha  = 8\left( {2{{\cos }^2}\alpha  - 1} \right)\)\( = 8\left( {2{{\left( { - \frac{3}{8}} \right)}^2} - 1} \right) \approx  - 5,8 cm\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Xét phương trình \(\left| {17cos5\pi t} \right| = 10\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}17cos5\pi t = 10\\17cos5\pi t =-10\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}cos5\pi t = \frac{{10}}{{17}}\\cos5\pi t = -\frac{{10}}{{17}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5\pi t =  \pm 0,9 + k2\pi \\5\pi t =  \pm 2,2 + k2\pi \end{array} \right.\left( {k\; \in \;\mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}t =  \pm 0,06 + k\frac{2}{5}\\t =  \pm 0,14 + k\frac{2}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Độ dài bóng \(|x|\;\)bằng 10 cm tại các thời điểm \(t =  \pm 0,06 + k\frac{2}{5}\),\(t =  \pm 0,14 + k\frac{2}{5}\),\(k \in \mathbb{Z}\).

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Độ dài bóng OM bằng 10 cm khi s = 10 hoặc s = -10.

Khi s = 10. Ta có: \(17cos5\pi t = 10 \Leftrightarrow cos5\pi t = \frac{{10}}{{17}}\)

Khi s = 10. Ta có: \(17cos5\pi t =  - 10 \Leftrightarrow cos5\pi t = \frac{{ - 10}}{{17}}\)

Từ đó, ta có thể xác định được các thời điểm t bằng cách giải phương trình côsin.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Sau một phút di chuyển, van V đã quay được một góc lượng giác có số đo góc là: \(\alpha=11\cdot60=660\left(rad\right)\)

Khi đó tọa độ điểm V biểu diễn cho góc lượng giác trên có tọa độ là: \(V\left(58\cdot cos\alpha,58\cdot sin\alpha\right)\approx\left(56;15,2\right)\)

Từ đó, khoảng cách từ van đến mặt đất khoảng \(58-15,2\approx42,8\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Thanh OM quay được \(3\dfrac{1}{10}\) vòng thì \(\alpha=3\dfrac{1}{10}\cdot360^o=1116^o\)

Từ M kẻ MH \(\perp\) Ox

\(\Rightarrow OH=15\cdot\left|cos1116^o\right|\approx12,1\)

Vậy độ dài bóng O'M' của OM khi thanh quay được \(3\dfrac{1}{10}\) là 12,1cm.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a, Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.

Ta có: MH = 60 – 30 = 30 m.

Khi đó hoành độ điểm M là 30.

⇒ \(\;\sin \alpha {\rm{ }} = \;\frac{{MH}}{{OM}} = \;\frac{{30}}{{31}}\)

\( \Rightarrow \cos \alpha  = \sqrt {1 - {{\left( {\frac{{30}}{{31}}} \right)}^2}}  = \frac{{\sqrt {61} }}{{31}}\)

b, Vì các cánh quạt tạo thành 3 góc bằng nhau nên \(\widehat {MOP} = \widehat {NOP} = \widehat {MON} = {120^0}\)

\( \Rightarrow \widehat {AOP} = \widehat {MOP} - \widehat {MOA}\)

\( \Leftrightarrow \sin \widehat {AOP} = \sin \left( {\widehat {MOP} - \widehat {MOA}} \right) = \sin \widehat {MOP}.\cos \widehat {MOA} - \cos \widehat {MOP}.\sin \widehat {MOA}\)

\( = \sin \frac{{2\pi }}{3}.\cos \alpha  - \cos \frac{{2\pi }}{3}.\sin \alpha  \approx 0,7\)

Vì vậy chiều cao của điểm P so với mặt đất là:

31. \(\sin \widehat {AOP}\) + 60 = 31.0,7+ 60 \( \approx \) 81,76 m.

Ta có:

\(\cos \widehat {AOP} \approx \sqrt {1 - 0,{7^2}}  = 0,71\)

\(\widehat {AON} = \widehat {AOP} + \widehat {PON}\)

\(\begin{array}{l} \Leftrightarrow \sin \widehat {AON} = \sin \left( {\widehat {AOP} + \widehat {PON}} \right)\\ \Leftrightarrow \sin \widehat {AON} = \sin \widehat {AOP}.\cos \widehat {PON} + \cos \widehat {AOP}.\sin \widehat {PON}\\ \Leftrightarrow \sin \widehat {AON} = 0,7.\cos \frac{{2\pi }}{3} + 0,71.\sin \frac{{2\pi }}{3} \approx 0,26\end{array}\)

\( \Rightarrow \sin \left( {OA,ON} \right) = \sin \widehat {AON} \approx 0,26\)

Vì vậy chiều cao của điểm N so với mặt đất là:

31. \(\sin \widehat {AON}\) + 60 = 31.0,26+ 60\( \approx \) 68,2 m.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Hình vẽ:

21 tháng 6 2017

a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).

Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ  v   → =   ( 2 ; 0 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo  v   → =   ( 2 ; 0 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

P(3;1) đối xứng qua trục Oy ta được M"(-3;1)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Khi: \(s =  - 5\sqrt 3 \;\)thì \(10sin\left( {10t + \frac{\pi }{2}} \right) =  - 5\sqrt 3 \; \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow sin\left( {10t + \frac{\pi }{2}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}10t + \frac{\pi }{2} =  - \frac{\pi }{3} + k2\pi \\10t + \frac{\pi }{2} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - \frac{\pi }{{12}} + k\frac{\pi }{5}\\t = \frac{\pi }{{12}} + k\frac{\pi }{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy \(t =  \pm \frac{\pi }{{12}} + k\frac{\pi }{5},k \in \mathbb{Z}\) là giá trị cần tìm.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

 

Gọi B, C lần lượt là hình chiếu của M lên Ox, Oy; D, E lần lượt là hình chiếu của N lên Ox, Oy

Ta có: OM = ON = 1

\(\widehat{MOC}=\dfrac{2\pi}{3}-\dfrac{\pi}{2}=\dfrac{\pi}{6}\\ \Rightarrow\left\{{}\begin{matrix}sin\widehat{MOC}=\dfrac{1}{2}\Rightarrow MC=\dfrac{1}{2}\\cos\widehat{MOC}=\dfrac{\sqrt{3}}{2}\Rightarrow MB=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Do điểm M có hoành độ nằm bên trái trục Ox nên tọa độ của điểm M là \(M\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\)

\(\widehat{NOD}=-\dfrac{\pi}{4}\\ \Rightarrow\left\{{}\begin{matrix}sin\widehat{NOD}=-\dfrac{\sqrt{2}}{2}\Rightarrow ND=-\dfrac{\sqrt{2}}{2}\\cos\widehat{NOD}=\dfrac{\sqrt{2}}{2}\Rightarrow NE=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

Vậy tọa độ điểm N là \(N\left(\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)\)

Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8\sin \frac{x}{9}\) và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như ở Hình 40.a)     Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (Làm tròn kết quả đến hàng phần mười)b)     Một sà lan chở khối hàng hóa được xếp thành hình hộp chữ nhật với độ cao 3,6m so với mực nước sông sao cho sà lan có thể...
Đọc tiếp

Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8\sin \frac{x}{9}\) và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như ở Hình 40.

a)     Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (Làm tròn kết quả đến hàng phần mười)

b)     Một sà lan chở khối hàng hóa được xếp thành hình hộp chữ nhật với độ cao 3,6m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hóa đó phải nhỏ hơn 13,1m.

c)     Một sà lan khác cũng chở khối hàng hóa được xếp thành hình hộp chữ nhật với chiều rộng của khối hàng hóa đó là 9m sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều cao của khối hàng hóa đó phải nhỏ hơn 4,3m

1
21 tháng 9 2023

Tham khảo:

a) Hai vị trí \(O\) và \(A\) là hai vị trí chân cầu, tại hai vị trí này ta có: \(y = 0\)

\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 0 \Leftrightarrow \sin \frac{x}{9} = 0 \Leftrightarrow \frac{x}{9} = k\pi (k \in \mathbb{Z}) \Leftrightarrow x = 9k\pi (k \in \mathbb{Z})\)

Quan sát đồ thị ta thấy, đồ thị hàm số \({\rm{y}} = 4,8 \cdot \sin \frac{x}{9}\) cắt trục hoành tại điểm 0 và \({\rm{A}}\) liên tiếp nhau với \(x \ge 0\).

Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} = 0\);

Xét \({\rm{k}} = 1\), ta có \({{\rm{x}}_2} = 9\pi \).

Mà \({x_1} = 0\) nên đây là hoành độ của 0 , do đó \({x_2} = 9\pi \) là hoành độ của điểm \(A\).

Khi đó \(OA = 9\pi  \approx 28,3\).

Vậy chiều rộng của con sông xấp xỉ 28,3 m.

b) Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với \({\rm{y}} = 3,6\).

\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 3,6 \Leftrightarrow \sin \frac{x}{9} = \frac{3}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{{\rm{x}}}{9} \approx 0,848 + {\rm{k}}2\pi }\\{\frac{{\rm{x}}}{9} \approx \pi  - 0,848 + {\rm{k}}2\pi }\end{array}} \right.\)

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp \(SHIFT\)\sin 3 \div 4 = ta được kết quả gần đúng là 0,85) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{x}} \approx 7,632 + 18{\rm{k}}\pi }\\{{\rm{x}} \approx 9\pi  - 7,632 + 18{\rm{k}}\pi }\end{array}({\rm{k}} \in \mathbb{Z})} \right.\)

Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} \approx 7,632;{{\rm{x}}_2} \approx 20,642\).

Ta biểu diễn các giá trị \(x\) vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số \(y = \) 4,8. \(\sin \frac{x}{9}\) như sau:

Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng \({\rm{BC}}\) trên hình vẽ.

Mà \(BC \approx 20,642 - 7,632 = 13,01(m) < 13,1(m)\).

Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

c) Giả sử sà lan chở khối hàng được mô tả bởi hình chữ nhật MNPQ:

Khi đó \(QP = 9;OA = 28,3\) và \(OQ = PA\).

Mà \(OQ + QP + PA = OA \Rightarrow OQ + 9 + OQ \approx 28,3 \Rightarrow OQ \approx 9,65\)

Khi đó \({y_M} = 4,8 \cdot \sin \frac{{{x_M}}}{9} = 4,8 \cdot \sin \frac{{OQ}}{9} \approx 4,8 \cdot \sin \frac{{9,65}}{9} \approx 4,22(\;{\rm{m}}) < 4,3\) (m).

Vậy để sà lan có thể đi qua được gầm cầu thì chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.