Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{105\cdot10^6}{15}=7\cdot10^6\)
Do đó: \(\left\{{}\begin{matrix}a=21000000\left(đồng\right)\\b=35000000\left(đồng\right)\\c=49000000\left(đồng\right)\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=35000\)
Do đó: a=175000; b=210000; c=315000
Gọi số tiền mỗi lớp đã quyên góp được lần lượt là :
x ; y ; z ( nghìn đồng ; x,y,z > 0 )
Số tiền quyên góp được của các lớp 7A, 7B, 7C lần lượt tỉ lệ với 3; 4; 5
=> x,y,z tỉ lệ thuận 3,4,5 => \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\left(1\right)\)
Tổng số tiền quyên góp được là 840 nghìn đồng=> x + y + z = 840 (2)
Từ (1) và (2) áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\dfrac{x}{3}+\dfrac{y}{4}+\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{840}{12}=70\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=70\times3=210\\\dfrac{y}{4}=70\times4=280\\\dfrac{z}{5}=70\times5=350\end{matrix}\right.\) ( nghìn đồng )
Vậy...
Gọi số tiền quyên góp của ba lớp 7A1, 7A2, 7A3 lần lượt là \(a,b,c\)(nghìn đồng) \(a,b,c\inℕ^∗\).
Vì số tiền quyên góp của ba lớp lần lượt tỉ lệ với \(4,5,6\)nên \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\).
Tổng số tiền quyên góp của hai lớp 7A1 và 7A2 nhiều hơn số tiền của lớp 7A3 là \(480\)nghìn đồng nên \(a+b-c=480\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{4+5-6}=\frac{480}{3}=160\)
\(\Leftrightarrow\hept{\begin{cases}a=160.4=640\\b=160.5=800\\c=160.6=960\end{cases}}\).
Gọi số tiền 7A,7B,7C lần lượt là a,b,c(đồng;a,b,c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=\dfrac{35000}{1}=35000\\ \Rightarrow\left\{{}\begin{matrix}a=175000\\b=210000\\c=315000\end{matrix}\right.\)
Vậy...
Gọi số tiền quyên góp của 3 lớp 7A, 7B, 7C lần lượt là a,b,ca,b,c.
KHi đó ta có
a5=b6=c9a5=b6=c9
và b−a=35.000b−a=35.000
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a5=b6=c9=b−a6−5=35.0001=35.000a5=b6=c9=b−a6−5=35.0001=35.000
Vậy số tiền quyên góp của lớp 7A là: 35.000×5=175.00035.000×5=175.000 (đ)
Số tiền quyên góp của lớp 7B là: 35.000×6=210.00035.000×6=210.000 (đ)
Số tiền quyên góp của lớp 7C là: 35.000×9=315.00035.000×9=315.000 (đ)
Cho 7a,b lần lượt là x,y(x,y>0)
Theo đề bài ta có:
x/3=y/5 và y-x=240000
Áp dụng tính chất dãy tỉ số bằng nhau:
x/3=y/5=y-x/5-3=120000
x=3.120000=360000
y=5.120000=600000
Vậy lớp 7A quyên góp đc 360000 đồng;7B quyên góp đc 600000 đồng
Gọi số tiền ủng hộ của 3 lớp lần lượt là x;y;z(với x;y;z∈N*)
Do số tiền đó tỉ lệ với 3;4;5 ta có:
x/3=y/4=z/5 với x+y+z=3600 000 (đồng)
Aps dụng tính chất dãy tỉ số = nhau,ta đc:
x/3=y/4=z/5=x+y+z/3+4+5=3 600 000/12=300 000
=> x/3=300 000=> x=900 000(đồng)
=> y/4=300 000 => y=120 0000đ
=> z/5=300 000 => z=150 0000đ
Lời giải:
Gọi số tiền ủng hộ của 3 bạn Bắc, Trung, Nam lần lượt là $a,b,c$. Theo bài ra ta có:
$a+b+c=120$ (nghìn đồng)
$\frac{a}{3}=\frac{b}{4}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{120}{12}=10$
$\Rightarrow a=10.3=30; b=4.10=40; c=5.10=50$ (nghìn đồng)
Tham khảo
Gọi ba bạn Bắc, Trunng, Nam ủng hộ tất cả 120 nghìn đồng là x,y,z ∈ N* và x,y,z < 120000 (đơn vị đồng)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
X/3 = Y/4 = Z/5 = X + Y + Z/3 + 4 + 5 =120000/12 = 10000
⇒ X = 10000.3 = 30000 (đồng)
Y = 10000.4 = 40000 (đồng)
Z = 10000.5 = 50000 (đồng)
Vậy mỗi bạn ủng hộ lần lượt 30000, 40000 và 50000 đồng