Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 + 2 = 7 là mệnh đề và là mệnh đề sai
Vì 3 + 2 = 5 ≠ 7
b) 4 + x = 3 là mệnh đề chứa biến
Vì với mỗi giá trị của x ta được một mệnh đề.
Ví dụ : với x = 1 ta có mệnh đề « 4 + 1 = 3 ».
với x = –1 ta có mệnh đề « 4 + (–1) = 3 ».
với x = 0 ta có mệnh đề 4 + 0 = 3.
c) x + y > 1 là mệnh đề chứa biến
Vì với mỗi cặp giá trị của x, y ta được một mệnh đề.
Ví dụ : x = 0 ; y = 1 ta có mệnh đề « 0 + 1 > 1 »
x = 1 ; y = 3 ta có mệnh đề « 1 + 3 > 1 ».
d) 2 – √5 < 0 là mệnh đề và là mệnh đề đúng
Vì 2 = √4 và √4 < √5.
d) \(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)
\(\Leftrightarrow0< x< 1\)
a) \(P\left(x\right):"x^2-5x+4=0"\)
\(x^2-5x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng
b) \(P\left(x\right):"x^2-5x+6=0"\)
\(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng
c) \(P\left(x\right):"x^2-3x=0"\)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng
d) \(P\left(x\right):"\sqrt[]{x}>x"\)
\(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)
\(\Leftrightarrow0< x< 1\)
Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng
e) \(P\left(x\right):"2x+3< 7"\)
\(2x+3< 7\)
\(\Leftrightarrow2x< 4\)
\(\Leftrightarrow x< 2\)
Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng
f) \(P\left(x\right):"x^2+x+1>0"\)
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
Các khẳng định là mệnh đề là:
a) \(3 + 2 > 5\)
d) \(1 - \sqrt 2 < 0\)
Các khẳng định là mệnh đề chứa biến là:
b) \(1 - 2x = 0\)
c) \(x - y = 2\)
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
a)
+) \(x = \sqrt 2 \) ta được mệnh đề là một mệnh đề đúng.
+) \(x = 0\) ta được mệnh đề là một mệnh đề sai.
b)
+) \(x = 0\) ta được mệnh đề là một mệnh đề đúng.
+) Không có giá trị của x để là một mệnh đề sai do \({x^2} + 1 > 0\) với mọi x.
c) chia hết cho 3” (n là số tự nhiên).
+) \(n = 1\) ta được mệnh đề chia hết cho 3” là một mệnh đề đúng.
+) \(n = 5\)ta được mệnh đề chia hết cho 3” là một mệnh đề sai.
Đáp án: D
2 - x = x nên x > 0 kết hợp đkxđ x ≤ 2 khi đó phương trình có nghiệm thỏa mãn 0 < x ≤ 2 ⇒ a sai.
7 - 4 3 = 2 - 3 . ⇒ b sai
2 x - 1 x - 2 = x + 1 x - 2 ⇒ 2x – 1 = x + 1 ( x ≠ 2 ) ⇔ x = 2 (loại).
Vậy phương trình vô nghiệm. ⇒ c đúng.
5 x 2 - 4 5 x + 3 < - 1 ⇔ 5 x 2 - 4 5 x + 4 < 0 ⇔ 5 x - 2 2 < 0 (vô lí) ⇒ d sai.
có 1 mệnh đề đúng.
Đáp án: D
Các mệnh đề chứa biến là: a, c, d.