K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3{\left( { - 2} \right)^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{3{{\left( { - 2} \right)}^{n + 1}}}}{{3{{\left( { - 2} \right)}^n}}} = \frac{{3{{\left( { - 2} \right)}^n}.\left( { - 2} \right)}}{{3{{\left( { - 2} \right)}^n}}} =  - 2\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 2\).

b) Ta có: \({u_{n + 1}} = {\left( { - 1} \right)^{\left( {n + 1} \right) + 1}}{.7^{n + 1}} = {\left( { - 1} \right)^{n + 2}}{.7^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 2}}{{.7}^{n + 1}}}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}.\left( { - 1} \right){{.7}^n}.7}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} =  - 7\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 7\).

c) Ta có: \({u_1} = 1;{u_2} = 2{u_1} + 3 = 2.1 + 3 = 5;{u_3} = 2{u_2} + 3 = 2.5 + 3 = 13\)

Vì \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số không là cấp số nhân.

25 tháng 8 2023

a) Ta có:

\(u_2=2u_1=2.3\\ u_3=2u_2=2.2.3=2^2.3\\ u_4=2u_3=2.2^2.3=2^3.3\)

b) \(u_n=2^{n-1}.3\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)

Suy ra, \({u_n} = \frac{1}{n}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Ta có:

\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)

\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)

Đặt \(u_{n+1}-2u_n=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Ta có:

\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)

\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)

\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)

\(...\)

\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)

\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Cộng theo vế, ta có:

\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)

\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)

\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)

\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)

Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)

\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)