Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu viết 00345 thì ta hiểu đó là số có ba chữ số 345. Với quy ước như vậy ta lí luận như sau: Từ dãy hình thức ∗∗∗∗∗ ta lần lượt thay dấu ∗ bởi các chữ số. Chữ số 3 có 5 cách đặt, khi đã đặt số 3, có 4 cách đặt số 4, có 3 cách đặt số 5. Khi đã đặt xong các số 3, 4, 5 rồi còn hai chỗ nữa. Ta có 7 cách đặt một trong 7 số còn lại vào chỗ dấu ∗ đầu tiên tính từbên trái và 7 cách đặt chữ số vào dấu ∗ còn lại. Vậy theo quy tắc nhân, có 5. 4. 3. 7. 7 = 2940 số nguyên dương không vượt quá 100000 mà chứa một chữ số 3, một chữ số 4 và một chữ số 5.
Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)
TH1: \(a=3\)
f có 2 cách chọn.
\(\overline{bcde}\) có \(A^4_6\) cách lập.
\(\Rightarrow\) Lập được \(2A^4_6=720\) số tự nhiên thỏa mãn.
TH2: \(b=3\)
Nếu \(f=0\Rightarrow\) a có 6 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(6.A_5^3=360\) số tự nhiên thỏa mãn.
Nếu \(f=5\Rightarrow\) a có 5 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(5A_5^3=300\) số tự nhiên thỏa mãn.
Vậy lập được \(720+360+300=1380\) số tự nhiên thỏa mãn.
Đáp án D
Sắp xếp cụm số 3,4,5 có 2 cách sắp xếp là 345 và 543
TH1:Cụm 2 số 3,4,5 đứng đầu có:
2.7.6.5 = 240 số thỏa mãn
TH2: Cụm 3 số 3,4,5 không đứng đầu có 3 cách sắp xếp là
x345xx; xx345x; xxx345
3 chữ số còn lại có: 6.6.5 = 180 cách chọn và sắp xếp
Do đó có 2.3.180 = 1080 số thỏa mãn
Theo quy tắc cộng có:
420 + 1080 = 1500 số thỏa mãn yêu cầu bài toán
Chọn B.
? TH1: 1 nằm ở vị trí đầu
4 chữ số phía sau có: 7.6.5.4 =840 (cách)
? TH2: 1 không nằm ở đầu
Có 2 cách chọn vị trí cho số 1
Vị trí đầu có 6 cách
3 vị trí còn lại có 6.5.4 = 120 (cách)
Số các số thỏa là: 2.6.120 = 1440
Số cách chọn là: 840 + 1440 = 2280 (cách)
Đáp án : D
Ta xét hai trường hợp sau:
+) TH1. chọn d có 3 cách,b có 4 cách, c có 3 cách nên có 3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì chọn a có 4 cách, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d khác 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Ta xét hai trường hợp sau:
+) TH1 , chọn d có 3 cách, b có 4 cách, c có 3 cách nên có
3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì có 4 cách chọn a, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d ≠ 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Chọn D,
Gọi số tự nhiên cần tìm có dạng .
TH1: Nếu a=1 khi đó có cách chọn 4 chữ số xếp vào b;c;d;e.
TH2: Nếu a khác 1 , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có cách chọn.
Như vậy trường hợp này có số.
Vậy có tất cả 840+1440=2280 số.
chọn A.
Đáp án D
Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.
Cách giải: Gọi số đó là a b c d e
- TH1: a = 1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4 = 840 số
- TH2: b = 1
+ a ≠ b , a ≠ 0 , nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4 = 720 số.
- TH3: c = 1.
+ a ≠ c , a ≠ 0 , nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4 = 720 số.
Vậy có tất cả 840 + 720 + 720 = 2280 số.
Trong 100 000 số nguyên dương đầu tiên, có \(5\cdot4\cdot3\cdot7\cdot7=2940\) số chứa một chữ số 3, một chữ số 4 và một chữ số 5.