K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Đáp án B

Hướng dẫn giải:  

+ Số cách chọn 1 viên bi xanh:  

+ Số cách chọn 2 viên bi đỏ:

+ Số cách chọn 5 viên bi trắng:

+ Số cách chọn 8 viên bi thỏa mãn yêu cầu bài toán: 

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

27 tháng 12 2021

TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.

\(\Rightarrow\) Có \(C^4_7\) cách chọn.

TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.

\(\Rightarrow\) Có \(C^4_8\) cách chọn.

TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.

\(\Rightarrow\) Có \(C^4_9\) cách chọn.

TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.

\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.

NV
31 tháng 12 2021

Số cách chọn: \(C_4^2.C_6^1=36\) cách

19 tháng 11 2018

Chọn B