Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 p/s tối giản \(\frac{a}{b}\)và \(\frac{c}{d}\)với ( a,b) = 1 ; (c,d) = 1
Nếu \(\frac{a}{b}+\frac{c}{d}=m\left(m\in Z\right)\)thì \(\frac{ad+bc}{bd}=m\Leftrightarrow ad+bc=mbd\left(1\right)\)
Từ (1) có : ad + bc \(⋮\)b và bc \(⋮\)b
=> ad \(⋮\)b vì (a,b)=1 => d \(⋮\)b (2)
Từ (2) có : ad + bc \(⋮\)d và ad \(⋮\)d
=> bc \(⋮\)d vì (c,d) = 1 => b \(⋮\)d (3)
Từ (2),(3) có : b = d
=> KL :...
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!
sorry bạn nha!
1. Gọi d là ƯC(n - 5 ; 3n - 14)
\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)
=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d
=> 3n - 15 - 3n + 14 chia hết cho d
=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(n - 5 ; 3n - 14) = 1
=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )
2. Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)
=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)
\(\frac{a}{5}=8\Rightarrow a=40\)
\(\frac{b}{6}=8\Rightarrow b=48\)
=> \(\frac{a}{b}=\frac{40}{48}\)
Vậy phân số cần tìm là \(\frac{40}{48}\)
3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên
=> \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)