K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

a, vì OB<OA(6<11)

=> B nằm giữa O;A

b, vì B nằm giữa O;A

Nên ta có : 

       OB+AB=OA

  => 6+AB=11

  => AB= 5(cm)

c, vì C thuộc tia đối Ox=> O nằm giữa C;B

 ta có : OC+OB=BC

       => 5+6=BC

       => BC=11(cm)

 hình bn tự vẽ nhé

 

10 tháng 12 2015

Trên tia Ox chứ có phải là tia õ đâu!!!!!!!!!!!!!!!!!

Mà bài này lớp 9 hay 6 vậy????  

Xét ΔODB và ΔOCA có

\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)

\(\widehat{O}\) chung

Do đó: ΔODB đồng dạng với ΔOCA

=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)

=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

Xét ΔODC và ΔOBA có

\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

\(\widehat{O}\) chung

Do đó: ΔODC đồng dạng với ΔOBA

=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)

=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)

=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)

6 tháng 1 2019

Các tam giác ∆ANE, ∆AMC và ∆BMD vuông cân

=>  A E B ^ = A D B ^ = A C B ^ = 45 0

Mà AB cố định nên các điểm A, B, C, D, E cùng thuộc một đường tròn

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
26 tháng 10 2016

Giúp mình tra lời với

 

7 tháng 12 2020

*Kẻ OI ⊥ EM, OH ⊥ FM. (1)

Theo đề, ta có AB=CD, AE=BM, CF=DM

Mà AI+EA=EI, IB+BM=IB và MD+DH=MH, HC+CF=HF

=>EM=MF (2)

Từ (1)(2), suy ra:

IO=OH (định lí giữa dây và khoảng cách từ tâm đến dây)(3)

EI=IM, MH=HF(định lí đường kính và dây) => EI=IM=MH= HF (4)

Xét △EOI và △FOH, có:

EI=FH (theo (4)) , góc EIO= góc FHO (=90o)

IO=OH (theo(3))

=> △EIO=△FOH (c.g.c)

Do đó: OE=OF ( 2 cạnh tương ứng)

Vậy OE=OF (đpcm)

HAVE A GOOD DAY!