Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: \(x^2+2ax+4a=0\)
\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a< 0\\a>4\end{matrix}\right.\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow4a^2-8a+8\left|a\right|=9\)
- Với \(a>0\) \(\Rightarrow4a^2=9\Rightarrow a^2=\frac{9}{4}\Rightarrow a=\frac{3}{2}< 4\left(l\right)\)
- Với \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{9}{2}>0\left(l\right)\end{matrix}\right.\)
Vậy \(a=-\frac{1}{2}\)
a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :
\(x^2=\left(k-1\right)x+2\)
\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)
\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)
Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)
Theo đề bài \(y_1+y_2=y_1y_2\)
\(\Rightarrow\left(k-1\right)^2+4=4\)
\(\Rightarrow k=1\)
Để (d) cắt (d') tại một điểm nằm trên trục tung thì:
m - 4 = 2
⇔ m = 6
Vậy m = 6 thì (d) và (d') cắt nhau tại một điểm trên trục tung
theo dg thẳng x=(4m+1)/(2m+1);y=-4m-1
Ta có Khoảng cách từ dg thẳng đến A là
căn((4m+1)/(2m+1)+2)^2+(-4m-1-3)^2)
tự khai ra giải pt