Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $O$ là tâm hình bình hành nên $O$ là trung điểm của $AC, BD$
$\Rightarrow \overrightarrow{OA}, \overrightarrow{OC}; \overrightarrow{OB}, \overrightarrow{OD}$ là 2 cặp vecto đối nhau
$\Rightarrow \overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}$ (đpcm)
b) Theo phần a ta có:
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OC}\)
\(=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{OD}\)
\(=(\overrightarrow{MO}+\overrightarrow{OB})+(\overrightarrow{MO}+\overrightarrow{OD})=\overrightarrow{MB}+\overrightarrow{MD}\) (đpcm)
gọi G và G' lần lượt là trọng tâm tam giác BAC và A'B'C'
Trước hết ta cần biết trọng tâm của 1 ∆ABC bất kỳ có 2 tính chất sau :
G là trọng tâm ∆ABC :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)(1)
Gọi O là điểm bất kỳ thì :
=>\(\overrightarrow{GO}+\overrightarrow{OA}+\overrightarrow{GO}+\overrightarrow{OB}+\overrightarrow{GO}+\overrightarrow{OC}=0\)
=> \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=-3\overrightarrow{GO}\)
=>\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\)(2)
Tức là trọng tâm 1 tam giác bất kỳ luôn có t/c (1) & (2)
Nếu G là trọng tâm ∆ABC
=>\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\)
=> \(\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{CO}=3\overrightarrow{GO}\)
Nếu G' là trọng tâm ∆A'B'C'
=> \(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}=3\overrightarrow{OG'}\) (4)
Lấy (3) + (4) TA ĐƯỢC
=>\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\overrightarrow{GG'}\)
mà G trùng G' thì GG^ = 0^
=> AA'^ + BB'^ + CC'^ = 0
câu a phải là CM \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\) chứ nhỉ?
a/ \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)
\(=\overrightarrow{AD}+\overrightarrow{CB}\)
b/ \(\overrightarrow{AB}=\overrightarrow{CD}\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{CB}+\overrightarrow{BD}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{BD}\)
Câu c nghe nó sai sai kiểu j ấy, \(\overrightarrow{AB},\overrightarrow{AC}\) tạo thành \(\widehat{BAC}\) rồi thì làm sao thành phân giác đc :))
a) Đúng
Giải thích: Nhận thấy a→ = -3.i→
Vì –3 < 0 nên a→ và i→ ngược hướng.
b) Đúng.
Giải thích:
⇒ a→ = -b→ nên a→ và b→ là hai vec tơ đối nhau.
c) Sai
Giải thích:
⇒ a→ ≠ -b→ nên a→ và b→ không phải là hai vec tơ đối nhau.
d) Đúng
Nhận xét SGK : Hai vec tơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.