K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

hình như sai đề mk ko hiểu đề này thì mk hiểu

Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Tính tích OH.OA theo R

bài làm

Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC.
a) Chứng minh tứ giác ABOC nội tiếp
b) Tính tích OH.OA theo R
c) Gọi E là hình chiếu của C trên đường kính BD của đường tròn tâm O. Chứng minh góc HEB bằng với góc HAB 
d) AD cắt CE ở K. Chứng minh K là trung điểm của CE
e) Tính theo R diện tích hình giới hạn bởi 2 tiếp tuyến AB, AC và cung nhỏ BC của đường tròn tâm O trong trường hợp OA = 2R

19 tháng 5 2022

Tam giác AOK vuông tại A 
có AM đường cao
=> AM ^2 = OM.MK
mà AM = MB 

=> AM.MB = OM.MK (1)
tứ giác DAIB nội tiếp
=> DM.MI = AM.MB(2)
từ 1 và 2
=> DM.MI = AM.MB
=> tg DOIK nội tiếp

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)

 

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MNa) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường trònb) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC)....
Đọc tiếp

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN

a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn

b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.

c) Kẻ ME ⊥ AB (E AB), MF ⊥ AC (F AC), MK ⊥ BC (K BC). Chứng minh góc KME bằng góc KMF

d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF

e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.

 

Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.

 

0

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: góc OHK+góc OBK=180 độ

=>OHKB nội tiếp

b: góc AHK=góc AOK

góc BHK=góc BOK

mà góc AOK=góc BOK

nên góc AHK=góc BHK

=>HK là phân giác của góc AHB