Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)
B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]
Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.
a, Đặt: \(\hept{\begin{cases}S_1=S_{PMA}\\S_2=S_{NMB}\\S_3=S_{PNC}\end{cases}}\)
\(\Rightarrow\)\(\frac{S_1}{S}=\frac{AM.AP}{AB.AC}\)
Và: \(\frac{S_2}{S}=\frac{BM.BN}{AB.CB}\)
Và: \(\frac{S_3}{S}=\frac{CP.CN}{AC.BC}\)
Ta có: \(\frac{AM}{MB}=\frac{k}{1}\Leftrightarrow\frac{AM}{AM+MB}=\frac{k}{k+1}\Leftrightarrow\frac{AM}{AB}=\frac{k}{k+1}\)
\(\frac{CP}{PA}=\frac{k}{1}\Leftrightarrow\frac{AP}{CP}=\frac{1}{k}\Leftrightarrow\frac{AP}{AP+CP}=\frac{1}{k+1}\)
\(\Leftrightarrow\frac{AP}{AC}=\frac{1}{k+1}\Rightarrow\frac{S_1}{S}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{\left(k+1\right)^2}\)
Chứng minh tương tự ta có: \(\frac{S_2}{S}=\frac{k}{\left(k+1\right)^2}\) và \(\frac{S_3}{S}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S-\left(S_1+S_2+S_3\right)=S-\frac{3k}{\left(k+1\right)^2}.S=S\left(1-\frac{3k}{\left(k+1\right)^2}\right)\)
b, \(S_{MNP}\) nhỏ nhất \(\Leftrightarrow\frac{k}{\left(k+1\right)^2}\)lớn nhất.
Ta có: \(\left(k+1\right)^2\ge4k\Leftrightarrow\frac{k}{\left(k+1\right)^2}\le\frac{1}{4}\)
\(\Rightarrow Max\left[\frac{k}{\left(k+1\right)^2}\right]=\frac{1}{4}\)
Khi \(k=1\Leftrightarrow M,P,N\) là trung điểm của \(AB,BC,CA\) và \(Min_{S_{MNP}}=S\left[1-\frac{3.1}{\left(1+1\right)^2}\right]=\frac{S}{4}\)
(Cũng không chắc)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n}{n+1}\)
Học tốt nha^^
+, Xét ΔABC và ΔMNP có :
AM/MB = BN/NC = CP/PA ( GT )
=> ΔABC ~ ΔMNP ( c - c - c )
=> AM/MB = BN/NC = CP/PA = k
Mà tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng
=> SMNP / SABC = k2
Để SMNP=1/3 SABC ( SMNP/SABC=1/3)thì :
k2 = SMNP / SABC=1/3
=> k = 1 / 9
Vậy để có tỉ số diện tích trên thì k = 1 / 9
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)