Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
Bạn tham khảo tại đây:
Câu hỏi của Vũ Đình Sơn - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo link
của bn Cool Kid ý
Trong đó chắc có đáp án hướng dẫn bạn làm bài này
#Hok tốt
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Đặt n^2+1234=a^2 ( a thuộc N)
ta có:
\(n^2+1234=a^2\)
\(\Leftrightarrow a^2-n^2=1234\)
\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=1234\)
Vì a thuộc N và n thuộc N nên ta có bảng:
a+n | 1 | 1234 | 2 | 617 |
a-n | 1234 | 1 | 617 | 2 |
a | 617,5 | 617,5 | 309,5 | 309,5 |
n | -616,5 | 616,5 | -207,5 | 307,5 |
(Không thỏa mãn) | (Không thỏa mãn) | (Không thỏa mãn) | (Không thỏa mãn) |
Vậy không có số tự nhiên n nào thỏa mãn đề bài
giả sử 3n+19=a2 (\(a\inℕ\)). dễ thấy a chẵn nên \(a^2\equiv0\)(mod 4)
=> 3n \(\equiv\)1 (mod 4)
Mặt khắc vì 3\(\equiv\)-1 nên \(3^n\equiv\left(-1\right)^n\)(mod 4)
Vậy n là số chẵn hay n=2m (\(m\inℕ\)) Ta có 32m+19=a2 nên \(\left(a-3^m\right)\left(a+3^m\right)=19\Rightarrow\hept{\begin{cases}a-3^m=1\\a+3^m=19\end{cases}\Rightarrow m=2\Rightarrow n=4}\)
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Giải:
Đặt \(n^2+n+1589=m^2\left(m\in N\right)\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
Nhân xét thấy \(2m+2n+1>2m-2n-1>0\) và chúng la những số lẻ nên ta có thể viết:
\(\left(2m+2n+1\right)\left(2m-2n-1\right)=3655.1=1271.5=205.31=\) \(155.41\)
\(\Leftrightarrow n=1588;316;43;28\)
\(\Rightarrow\) Tổng \(=1588+316+43+28=1975\)
1975 bạn nhé