Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của n số tự nhiên lẻ đầu tiên có phải là một số chính phương không? Vì sao?
có.vì
n số lẻ đầu tiên là:1 , 3 , 5 , 7 , ....... , 2n - 1
tổng của n số lẻ là (1 + 2n - 1) x n : 2 = 2n2 : 2= n2 là số chính phương
vậy............
tổng của số lẻ đầu tiên là 1 là 1 số chính phương
nhớ bấm đúng cho mình nhé! mình nhanh nhất đấy!
30 số lẻ liên tếp tính từ số 123 trở đi tức là số lẻ đầu tiên 123 và số lẻ cuối cùng là 183
Có số cặp là:(183-123):2+1=15 cặp
Tổng củ 30 số tự nhiên lẻ đầu tiên là:
(123+183)x15=4590
Các số lẻ đó liên tiếp lần lượt là :
1;3;5;7;...;57;59 .
Vậy tổng 30 số lẻ liên tiếp là :
\(\frac{\left(59+1\right)\times30}{2}=915\)
Đáp số : 915
Goi tong do la : A
A = 2 + 4 + 6 +.......+ 2n ( n thuoc N* )
A=2.1 + 2.2 + 2.3 + ........+ 2.n
A=2(1+2+3+......+n)
A = 2 . n(n+1) / 2 = n.(n+1)
Ta co : n thuoc N* ; n < n+1
=> n.n < n(n+1) < (n+1)(n+1)
Hay n^2 < n.(n+1) < (n+1)^2
Ma n^2 va (n+1) ^2 la 2 so tu nhien lien tiep khac 0
Vay n(n+1) ko phai la so chinh phuong (dpcm)
gọi tổng đó là A
=>A = 2 + 4 + 6 +.......+ 2n ( n \(\in\) N* )
A =2.1 + 2.2 + 2.3 + ........+ 2.n
A =2(1+2+3+......+n)
A = \(\frac{2.n\left(n+1\right)}{2}\) = n.(n+1)
Ta co : n \(\in\) N* ; n < n+1
=> n.n < n(n+1) < (n+1)(n+1)
Hay n2 < n.(n+1) < (n+1)2
Mà n^2 và (n+1) ^2 là 2 số tự nhiên liên tiếp\(\ne\)0
Vậy n(n+1) ko phải là số chính phương
h 5 so tu nhien dau khac 0 la
1*2*3*4*5=120
tong 10 so tu nhien dau la
1+2+3+4+5+6+...+9+0=45
tong cua 2 phep tinh tren la;45+120=165