Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)
=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)
=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)
=> (x+y)(xz+zy+z2+xy)=0
=> (x+y)(x+z)(y+z)=0
=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018
=> z=2018 hoac y=2018 hoac z=2018
=> DPCM
Có tồn tại
có tồn tại