Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số nguyên x, y, z đồng thời thoả mãn các điều kiện sau :
x2 = y - 1 ; y2 = z -1 ; z2 = x - 1
Lời giải:
Ta có: \(\left\{\begin{matrix} x^2=y-1\\ y^2=z-1\\ z^2=x-1\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} x^2-y^2=y-z\\ y^2-z^2=z-x\\ z^2-x^2=x-y\end{matrix}\right.\)
\(\Rightarrow (x^2-y^2)(y^2-z^2)(z^2-x^2)=(x-y)(y-z)(z-x)\)
\(\Leftrightarrow (x-y)(y-z)(z-x)[(x+y)(y+z)(z+x)-1]=0\)
Giả sử 2 trong 3 số \(x,y,z\) bằng nhau \((x=y)\)
Thay vào PT 1: \(x^2=y-1=x-1\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}=0\) (vô lý)
Do đó \(x\neq y\neq z\)
\(\Leftrightarrow (x-y)(y-z)(z-x)\neq 0\)
Suy ra \((x+y)(y+z)(z+x)=1\) (1)
Vì \(x,y,z\in\mathbb{Z}\Rightarrow x+y,y+z,z+x\in\mathbb{Z}\) (2)
Từ (1),(2) suy ra \(x+y,y+z,z+x\in \left\{-1;1\right\}\)
Vì chỉ có 2 giá trị mà có 3 số nên tồn tại 2 số có cùng giá trị 1 hoặc -1
Giả sử \(x+y=y+z\Rightarrow x=z\) (vô lý vì \(x\neq y\neq z\) )
Vậy không tồn tại bộ 3 số nguyên x,y,z thỏa mãn.
Không tồn tại các số nguyên x,y,z sao cho 3x-2y-2015z=85 Vì:
-Ta luôn biết 3x(x\(\in Z\)\(\in Z\) thuộc Z) là số lẻ.(1)
-Ta luôn biết 2y(y thuộc Z) là số chẵn.(2)
-Ta luôn biết 2015z(z thuộc Z) là số lẻ.(3)
-ta cũng biết số lẻ - số chẵn=số lẻ và số lẻ - số lẻ = số chẵn.(4)
Từ (1);(2);(3);(4) ta có: 3x - 2y - 2015z
=Số lẻ - số chẵn - số lẻ
=số lẻ - số lẻ=số chẵn mà 85 là số lẻ trái với đề bài.
Vậy không tồn tại các số x,y,z sao cho........
CÂU 2:
/x+19/+/x+15/+/x+2011/=4x
=> x+19+x+15+x+2011=4x
=> vế trái sẽ là số dương
4x+2045=4x
=> x=2045