K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

Xin câu dễ :]] Hữu cơ hông chơi

Dùng phương pháp sunfat có thể điều chế được khí `HF,HCl` vì đây là 2 chất có tính oxi hoá và sẽ không tiếp tục tác dụng với \(H_2SO_{4\left(đ\right)}\) . Đối với 2 chất còn lại sẽ xảy ra phản ứng với \(H_2SO_{4\left(đ\right)}\)

\(NaF+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}NaHSO_4+HF\)

\(NaCl+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}NaHSO_4+HCl\)

\(2NaI+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}Na_2SO_4+2HI\\ 8HI+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}H_2S+4I_2+4H_2O\)

\(2NaBr+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}Na_2SO_4+2HBr\\ 2HBr+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}SO_2+Br_2+2H_2O\)

Chào mọi người. Lâu rồi mình chưa làm tiếp về phần ôn thi vào 10 chuyên Toán, vậy nên hôm nay mình sẽ làm tiếp về 2 phần còn lại của số học là: Số nguyên tố, hợp số và phương trình nghiệm nguyên nhé!Các bạn có thể xem những bài viết trước của...
Đọc tiếp

Chào mọi người. Lâu rồi mình chưa làm tiếp về phần ôn thi vào 10 chuyên Toán, vậy nên hôm nay mình sẽ làm tiếp về 2 phần còn lại của số học là: Số nguyên tố, hợp số và phương trình nghiệm nguyên nhé!

Các bạn có thể xem những bài viết trước của mình:

https://hoc24.vn/cau-hoi/chao-moi-nguoi-minh-la-minh-day-minh-hom-nay-se-chia-se-tiep-cho-cac-ban-nhung-kien-thuc-lien-quan-den-ky-thi-chuyen-dayo-phan-truoc-minh-cung-da-noi-ve-phan-phuong-trinh-he-phuong-trinh-roi-ba.8374692898508

https://hoc24.vn/cau-hoi/hello-moi-nguoi-minh-la-binh-minh-moi-nguoi-tren-web-hay-goi-minh-la-san-sai-sun-rang-etc-noi-chung-la-moi-nguoi-co-the-goi-minh-la-gi-cung-d.8359703531873

I). Số nguyên tố/ hợp số.

Trước hết, số nguyên tố là số lớn hơn một, và chỉ có 2 ước là 1 và chính nó. Ngược lại hợp số là số lớn hơn một, và có nhiều hơn 2 ước.

Một số tính chất cơ bản về số nguyên tố hay hợp số mà bạn nên biết.

1) Số nguyên tố nhỏ nhất là 2, và là số chẵn duy nhất.

2) Mọi hợp số có thể phân tích ra thừa số nguyên tố.

3) Số nguyên tố lớn hơn 2 luôn có dạng `4k+-1` hay `6k+-1`.

4) `ab vdots p` thì `a vdots p` hoặc `b vdots p` với p nguyên tố.

5) Số ước số của `n=(n_1+1)(n_2+1)(n_3+1)...` với n là số mũ của thừa số nguyên tố khi phân tích.

VD: `12=2^2 xx 3 -> 12` có `(2+1)(1+1)=6` ước.

6) Hai số liên tiếp nhau luôn NTCN.

7) Hai số a,b gọi là NTCN khi `(a, b)=1`.

Vận dụng các tính chất sau, các bạn thử giải những bài toán sau nhé.

Bài 1: `a, n^2+n+2` là số nguyên tố hay hợp số?

`b, p^2+200` là số nguyên tố hay hợp số?

Bài 2: Tìm `p` để `p+2, p+4, p+6, p+8` là số nguyên tố.

Bài 3: Cho p là số nguyên tố và một trong 2 số 8p + 1 và 8p - 1 là 2 số nguyên tố, hỏi số thứ 3 (ngoài 2 số nguyên tố, số còn lại) là số nguyên tố hay hợp số?

Bài 4: Hai số `2^n-1` và `2^n+1` có thể đồng thời nguyên tố không? Vì sao.

Bài 5: a) Chứng minh rằng số dư trong phép chia của một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 30 thì kết quả ra sao?

b) Chứng minh rằng nếu tổng của n lũy thừa bậc 4 của các số nguyên tố lớn hơn 5 là một số nguyên tố thì (n,30) = 1.

II) Phương trình nghiệm nguyên.

Một số dạng phương trình nghiệm nguyên thường gặp:

Phương pháp dùng tính chất chia hết

Ví dụ: `3x+5y=17`.

`<=> x=(17-5y)/3`.

`=> 17 - 5y  vdots 3.`

`<=> 5y equiv 2 (mod 3)`

`=> y=3k+1 <=> x=-5k+4.`

Vậy `...`

Phương pháp xét số dư từng vế

VD: Tìm x, y nguyên tố:

`y^2-2x^2=1`.

`<=> y^2=1+2x^2` nên `y` lẻ.

Đặt `y=2k+1 => y^2=(2k+1)^2 -> x=2k^2+2k,` mà `x` nguyên tố nên `x=2, y=3.`

Phương pháp sử dụng bất đẳng thức

VD: Tìm `x, y, z` tm: `1/x+1/y=z`

`<=> x+y=xyz`.

Không mất tổng quát, giả sử `x <=y`.

`=> xyz=x+y<=2y`

`<=> xz<=2`.

`@ x=1 => z=2 => y=1.`

`@ x=2 => z=1 => y=2`.

Vậy `...` 

Phương pháp dùng tính chất của số chính phương

VD: Tìm `x,y in ZZ` `x^2+y^2-x-y=8`

`<=> 4x^2+4y^2-4x-4y=32`.

`<=> (2x-1)^2+(2y-1)^2=34`

Do `x, y in ZZ` nên `(2x-1)^2, (2y-1)^2 in ZZ`.

`=> (2x-1)^2= 3^2` hoặc `(2x-1)^2=5^2`.

Đến đây bạn đọc tự giải các TH sau nhé.

Okay, vậy là phần số học cũng đã hoàn thành. Nếu bạn có ý kiến hay đóng góp thì hãy liên hệ với mình qua Facebook https://www.facebook.com/stfu.calcius/ nhé.

(Bài viết mình sử dụng một số bài của web tailieumontoan.com, các bạn có thể lên trên web nếu muốn luyện nhiều bài tương tự hơn nhé!)

2
26 tháng 10 2023

Cảm ơn bạn nhé đúng lúc mình đang cần mình sắp thi học sinh giỏi môn Toán nên cần gấp những kiến thức này cảm ơn bạn nhiều nhé

1 tháng 11 2023

hhhhhhhhhhhhrfbgnjyhmdnyzjh6j6hdrj6hfxtnyth7rfgnyhettfrhtncnhbtznfgftfxxvbhmzcxvnxnnnnnnnnnxyfh8wgcg8xfvbcsygfxcrhdty6rg56dberxfhtgbfvhg$RTF$retr3gs35tfg5r4fnBTRFGN^TgtgyndzdttgyntbbrFTG%dregbfgntxby6gzngtxygzrgjhntgrrtrt%$$%RTGNTGNR$TGBNGBNDTGGRT^HHH$URN&RHNH&YRNB

29 tháng 10 2016

Mình khuyên thật lòng nếu giờ mà chưa ôn gì hết thì đừng thi không thì mang nhục

Ôn dạng là bước đầu luyện đề là bước sau cứ làm theo thứ tự đó nhé. 

29 tháng 10 2016

cảm ơn nha, mặc kệ thì không được có mất gì đâu biết đâu ăn may

Hôm nay mình sẽ tổ chức ra một cuộc thi. Có chủ đề chuyên môn thuộc 3 bộ môn: Toán, Hóa Học, Vật Lý Đây là cuộc thi có quy mô lớn hơn so với các minigame trước diễn ra trong 3 vòng Và đây là vòng 1 của cuộc thi diễn ra từ 31-10 đến 2-11 vòng này gồm có 20 câu hỏi trắc nghiệm trong 3 môn Toán, Lý, Hóa. Để vượt qua vòng 1 các bạn cần trả lời chính xác hơn 60% số câu tương đương với 12 câu hỏi Số thí sinh được...
Đọc tiếp

Hôm nay mình sẽ tổ chức ra một cuộc thi. Có chủ đề chuyên môn thuộc 3 bộ môn: Toán, Hóa Học, Vật Lý 

Đây là cuộc thi có quy mô lớn hơn so với các minigame trước diễn ra trong 3 vòng 

Và đây là vòng 1 của cuộc thi diễn ra từ 31-10 đến 2-11 vòng này gồm có 20 câu hỏi trắc nghiệm trong 3 môn Toán, Lý, Hóa. Để vượt qua vòng 1 các bạn cần trả lời chính xác hơn 60% số câu tương đương với 12 câu hỏi 

Số thí sinh được chọn vào vòng 2 là 30 người lấy theo thời gian làm bài và thành tích. 

+ Vượt qua vòng 1 nhận phần thưởng 2GP 

Điều kiện để tham gia cuộc thi là không giới hạn mọi thành viên đều được tham gia 

- Dưới đây là link vòng 1:

Link:  azota.vn/de-thi/4a36nu 

Mã vào thi: vong1minigame

- Mỗi thí sinh có 20 phút để hoàn thành bài thi và phải để dưới chế độ toàn màn hình 

- Cách tham gia

Dán đường link và truy cập vào azota 

Nhập mật khẩu 

Nhập "đường link trang cá nhân vào phần tên", phần lớp nhập "Hoc24" 

- Mỗi thí sinh chỉ được phép làm 1 lần 

- Không được xem kết quả sau khi hoàn thành bài 

_________________________________
Cơ cấu giải thưởng:

- Vượt qua vòng 1: 2 GP

- Vượt qua vòng 2: 5 GP

- Vượt qua vòng 3: 10GP (chỉ cần hoàn thành bài)

Giải nhất vòng 3: 30coin + 40GP 

Giải nhì vòng 3: 20coin + 30GP 

Giải ba vòng 3: 10 coin + 20GP 

_____________________________

Thể lệ vòng 2 và kết quả vòng 1 sẽ được công bố vào tối 2-11 

Phần thưởng GP được anh Đỗ Thanh Hải tài trợ và phần thưởng coin do mình trao 

Chúc các bạn một ngày vui vẻ

* Chú ý: Các bạn không điền link cá nhân thì chụp ảnh màng hình kết quả nhé ! Nếu không chụp ảnh vào thì kết quả bị loại bỏ ! 

14
31 tháng 10 2023

loading...

Không mấy cho lên 8,5 cho đẹp đk ní=))

31 tháng 10 2023

vào kiểu j

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>Cuộc thi Toán Tiếng Anh VEMC | FacebookNếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu-------------------------------------------------------------------[Toán.C16 _ 19.1.2021]Người biên soạn...
Đọc tiếp

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C16 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích Vietnam TST, 1996: Chứng minh rằng với x,y,z là các số thực bất kì ta có bất đẳng thức:

\(6\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le27xyz+10\left(x^2+y^2+z^2\right)^{\dfrac{3}{2}}\).

[Toán.C17 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích IMO, 1983: Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:

\(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\).

[Toán.C18 _ 19.1.2021]

Người biên soạn câu hỏi: Nguyễn Bình An

Trích IMO, 2001: Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge1.\)

[Toán.C19 _ 19.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Trích Vasile Cirtoaje: Cho a,b,c,d lớn hơn hoặc bằng 0 thỏa mãn a + b + c + d = 4. Chứng minh rằng:

\(16+2abcd\ge3\left(ab+ac+ad+bc+bd+cd\right)\).

*4 câu hỏi này xin được tặng các bạn một chút GP khi các bạn giải được hoàn hảo. Mong các thầy cô sẽ trao giải cho các bạn!

3
19 tháng 1 2021

[Toán.C17_19.1.2021]

Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)

Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)

\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)

Áp dụng BĐT BSC:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng

20 tháng 1 2021

VietNam TST, 1996.

Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:

\(6\left(x+y+z\right)\le27xyz+10\)

Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)

Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)

Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$

Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$

Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)

Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)

Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$

Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)

Từ đây thay vào $(1)$ cần chứng minh:

$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$

Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$

Đây là điều hiển nhiên.

17 tháng 1 2021

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

17 tháng 1 2021

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

26 tháng 11 2017

so sánh hai lũy thừa 123456789 và 567891234

toán lớp 6

giúp em bài này với ạ : 

tìm x biết : 

\(\sqrt{x-1}=5\)           \(;\sqrt{\left(x-\frac{1}{3}\right)^2=7}\)         \(;\sqrt{1+x}+5=3\)

AA
27 tháng 8 2015

Qua các câu trả lời của Thầy Giáo Toán, Admin tin rằng bạn là Thầy giáo đích thực. Cảm ơn Thầy Giáo Toán rất nhiều vì đã giúp cho các thành viên trên Online Math. Mong được có dịp gặp mặt Thầy.

27 tháng 8 2015

thầy giáo thiệt hay là hs mà đòi leo cao đấy