Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin câu dễ :]] Hữu cơ hông chơi
Dùng phương pháp sunfat có thể điều chế được khí `HF,HCl` vì đây là 2 chất có tính oxi hoá và sẽ không tiếp tục tác dụng với \(H_2SO_{4\left(đ\right)}\) . Đối với 2 chất còn lại sẽ xảy ra phản ứng với \(H_2SO_{4\left(đ\right)}\)
\(NaF+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}NaHSO_4+HF\)
\(NaCl+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}NaHSO_4+HCl\)
\(2NaI+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}Na_2SO_4+2HI\\ 8HI+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}H_2S+4I_2+4H_2O\)
\(2NaBr+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}Na_2SO_4+2HBr\\ 2HBr+H_2SO_{4\left(đ\right)}\underrightarrow{t^o}SO_2+Br_2+2H_2O\)
Cảm ơn bạn nhé đúng lúc mình đang cần mình sắp thi học sinh giỏi môn Toán nên cần gấp những kiến thức này cảm ơn bạn nhiều nhé
hhhhhhhhhhhhrfbgnjyhmdnyzjh6j6hdrj6hfxtnyth7rfgnyhettfrhtncnhbtznfgftfxxvbhmzcxvnxnnnnnnnnnxyfh8wgcg8xfvbcsygfxcrhdty6rg56dberxfhtgbfvhg$RTF$retr3gs35tfg5r4fnBTRFGN^TgtgyndzdttgyntbbrFTG%dregbfgntxby6gzngtxygzrgjhntgrrtrt%$$%RTGNTGNR$TGBNGBNDTGGRT^HHH$URN&RHNH&YRNB
Mình khuyên thật lòng nếu giờ mà chưa ôn gì hết thì đừng thi không thì mang nhục
Ôn dạng là bước đầu luyện đề là bước sau cứ làm theo thứ tự đó nhé.
cảm ơn nha, mặc kệ thì không được có mất gì đâu biết đâu ăn may
[Toán.C17_19.1.2021]
Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)
Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)
\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)
\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)
Áp dụng BĐT BSC:
\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng
VietNam TST, 1996.
Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:
\(6\left(x+y+z\right)\le27xyz+10\)
Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)
Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)
Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$
Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$
Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)
Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)
Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$
Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)
Từ đây thay vào $(1)$ cần chứng minh:
$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$
Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$
Đây là điều hiển nhiên.
Câu 4b:
Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).
Kết hợp với (1) ta có:
\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).
Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))
\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))
\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).
Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:
\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)
\(\Rightarrow P\ge507\).
Đẳng thức xảy ra khi a = b = 1.
Vậy Min P = 507 khi a = b = 1.
Giải nốt câu 4a:
ĐKXĐ: \(x\geq\frac{-1}{2}\).
Phương trình đã cho tương đương:
\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)
\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).
Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).
Do đó phương trình (2) vô nghiệm.
Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).
Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).
giúp em bài này với ạ :
tìm x biết :
\(\sqrt{x-1}=5\) \(;\sqrt{\left(x-\frac{1}{3}\right)^2=7}\) \(;\sqrt{1+x}+5=3\)
Qua các câu trả lời của Thầy Giáo Toán, Admin tin rằng bạn là Thầy giáo đích thực. Cảm ơn Thầy Giáo Toán rất nhiều vì đã giúp cho các thành viên trên Online Math. Mong được có dịp gặp mặt Thầy.
ok anh
image lm sao á ko thấy hình a ơi