K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Sắp xếp :  f(x) =  10x7 - 8x5 - 6x3 + 4x + 1/4

                  g(x) = 9x8 - 7x6 - 5x4 + 3x2 + 3/4

=> f(x) + g(x) = 9x8 + 10x7 - 7x6 - 8x5 - 5x4 - 6x3 + 3x2 + 4x + 1

=> f(x) - g(x) = -9x8 + 10x7 + 7x6 - 8x5 + 5x4 - 6x3 - 3x2 + 4x - 1/2 

21 tháng 4 2022

`Answer:`

\(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)

\(=\left(2x^4-x^4\right)-3x^2+\left(5x-3x\right)-5\)

\(=x^4-3x^2+2x-5\)

\(g\left(x\right)=-2x^3+10x-1-7x^2+x^4-15x+10x^2\)

\(=x^4-2x^3+\left(-7x^2+10x^2\right)+\left(10x-15x\right)-1\)

\(=x^4-2x^3+3x^2-5x-1\)

\(f\left(x\right)+g\left(x\right)=\left(x^4-3x^2+2x-5\right)+\left(x^4-2x^3+3x^2-5x-1\right)\)

\(=\left(x^4+x^4\right)-2x^3+\left(-3x^2+3x^2\right)+\left(2x-5x\right)+\left(-5-1\right)\)

\(=2x^4-2x^3-3x-6\)

a) Ta có: \(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)

\(=x^4-3x^2+2x-5\)

Ta có: \(g\left(x\right)=2x^3+10x-1-7x^2-15x+10x^2\)

\(=2x^3+3x^2-5x-1\)

b) Ta có: f(x)+g(x)

\(=x^4-3x^2+2x-5+2x^3+3x^2-5x-1\)

\(=x^4-2x^3-3x-6\)

Ta có: f(x)-g(x)

\(=x^4-3x^2+2x-5-2x^3-3x^2+5x+1\)

\(=x^4-2x^3-6x^2+7x-4\)

14 tháng 6 2020

Thank bn

20 tháng 6 2020

\(f\left(x\right)=8x^4-7x^3+7x^2+\frac{29}{5}x-\frac{1}{3}\)

\(g\left(x\right)=-8x^4-7x^3-3x^2+\frac{82}{3}\)

\(f\left(x\right)+g\left(x\right)=-14x^3+4x^2+\frac{29}{5}x+27\)

23 tháng 6 2021

a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)

\(=6x^4-3x^3+2x^2+2011\)

\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)

\(=-3x^4+2x^3-5x^2-2012\)

b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)

\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)

\(=3x^4-x^3-3x^2-1\)

\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)

\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)

\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)

\(=9x^4-5x^3+7x^2+4023\)

1 tháng 5 2017

bài 3:

a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5

= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5

= 7x4+2x3+2x2-x+5

g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3

=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5

= 7x4+x3+x2+x+5

b) h(x)=f(x)-g(x)

=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)

=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5

=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)

=x3+x2-2x

Bài 4:

a) f(x)=5x4+x3-x+11+x4-5x3

=(5x4+x4)+(x3-5x3)-x+11

=6x4-4x3-x+11

g(x)=2x3+3x4+9-4x3+2x4-x

=(3x4+2x4)+(2x3-4x3)-x+9

=5x4-2x3-x+9

b) h(x)=f(x)-g(x)

=(6x4-4x3-x+11)-(5x4-2x3-x+9)

=6x4-4x3-x+11-5x4-2x3-x+9

=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)

= x4-6x3-2x+20

c) Với x = -2

Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0

Vậy x = -2 không phải là nghiệm của đa thức h(x)

đúng thì tặng 1 tick cho mk nk các pn!!!

2 tháng 5 2017

giải câu c ở bài 3 với

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)