Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-1}{2}\right)\)+ \(\left(\frac{-1}{9}\right)\)\(-\frac{7}{18}\)\(-\left(-\frac{3}{5}\right)\)\(-\left(-\frac{2}{7}\right)\)\(+\frac{4}{35}\)+ \(\frac{1}{71}\)
=\(\frac{-9-2-7}{18}\)\(-\frac{-21-10-4}{35}\)+\(\frac{1}{71}\)
=\(\frac{-18}{18}\)\(-\frac{-35}{35}\)+\(\frac{1}{71}\)
=-1 -(-1)+\(\frac{1}{71}\)
=\(\frac{1}{71}\)
\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right)}\)
\(=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{18.19.20...36}{1.2.3...19}:\frac{20.21.22...36}{1.2.3...17}\)
\(=\frac{18.19.20...36}{1.2.3...19}.\frac{1.2.3...17}{20.21.22....36}=\frac{1.2.3...17.18...36}{1.2.3...19.20...36}=1\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
\(S=\left(\frac{17}{71}+\frac{17.101}{71.101}+\frac{17.10101}{71.10101}\right):\frac{17.1010101}{71.1010101}\)
\(S=\left(\frac{17}{71}+\frac{17}{71}+\frac{17}{71}\right):\frac{17}{71}\)
\(S=3.\frac{17}{71}:\frac{17}{71}=3\)
\(S=\left(\frac{17}{71}+\frac{17.101}{71.101}+\frac{17.10101}{71.10101}\right):\frac{17.1010101}{71.1010101}\)
\(S=\left(\frac{17}{71}+\frac{17}{71}+\frac{17}{71}\right):\frac{17}{71}\)
\(S=3.\frac{17}{71}:\frac{17}{71}\)
\(\Rightarrow S=3\)
Rất vui vì giúp đc bạn <3