Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy với a,b >0 thì \(\frac{a}{b}<\frac{a+n}{b+n}\), với a,b<0 thì \(\frac{a}{b}>\frac{a+\left(-n\right)}{b+\left(-n\right)}\) \(\left(n\in Z;\right)n>0\)
Vậy ta sắp xếp như sau:
\(-\frac{8}{9};-\frac{6}{7};-\frac{4}{5};-\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{5}{6};\frac{7}{8};\frac{9}{10}\)
b, Có:
\(\frac{0}{23}=0\)
\(-\frac{14}{5}<-1<\frac{-15}{19}<-\frac{15+\left(-2\right)}{19+\left(-2\right)}=-\frac{13}{17}\)
\(\frac{5}{2}>\frac{4}{2}=2>\frac{11}{7}=\frac{99}{63}>\frac{13}{9}=\frac{91}{63}\)
Vậy ta sắp xếp như sau:
\(-\frac{14}{5};-\frac{15}{19};-\frac{13}{17};0;\frac{13}{9};\frac{11}{7};\frac{5}{2}\)
\(M=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{17}{72}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{108}{72}-\dfrac{60}{72}+\dfrac{42}{72}-\dfrac{17}{72}+\dfrac{-27}{60}+\dfrac{22}{60}+\dfrac{-52}{168}+\dfrac{45}{168}\)
\(=\dfrac{73}{72}-\dfrac{1}{12}-\dfrac{1}{24}=\dfrac{73}{72}-\dfrac{6}{72}-\dfrac{3}{72}=\dfrac{64}{72}=\dfrac{8}{9}\)
1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+19/90
=1-1/2-1/3+1/3+1/4-1/4-1/5+.+1/9+1/10
=1-1/2+1/10
=1/2+1/10
=5/10+1/10
=6/10
=3/5
\(=\left(1+\frac{1}{2}\right)-1+\frac{1}{6}+\left(\frac{1}{2}+\frac{1}{12}\right)-\frac{1}{2}+\frac{1}{20}+\left(\frac{1}{3}+\frac{1}{30}\right)-\frac{1}{3}+\frac{1}{42}+\left(\frac{1}{4}+\frac{1}{56}\right)-\frac{1}{4}+\frac{1}{72}\)
=\(=\left(1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}\right)\)
\(=0+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\right)=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{8}-\frac{1}{8}\right)\)\(=\left(\frac{9}{9}-\frac{1}{9}\right)+0+...+0=\frac{8}{9}\)
\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)=2
bạn lm hẳn ra ý