Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)
\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3\)
Lời giải:
$(a+b)^3-3ab(a+b)$
$=a^3+3a^2b+3ab^2+b^3-(3a^2b+3ab^2)$
$=a^3+b^3$
Ta có đpcm.
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\left(đpcm\right)\)
\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3\)
\(a,=\left(5x-1\right)^2\\ b,=\left(x+4\right)^2\\ c,=\left(4x+3y\right)^2\\ d,=\left(\dfrac{x}{4}+2y\right)^2\)
\(a,A=\left(x+5\right)^3=\left(-10+5\right)^3=\left(-5\right)^3=-125\\ b,B=\left(2x+3y\right)^2=\left(2\cdot1+3\cdot2\right)^2=7^2=49\\ c,C=\left(3x-y\right)^3=\left(3\cdot1+2\right)^3=5^3=125\)
a)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=x^3+3x^2+3x+1\)
b)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3+3.2x.3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
c)
\(x^3+3.x^2.\dfrac{1}{2}+3.x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=x^3+1,5x^2+0,75x+0,125\)
d)
=\(\left(x^2\right)^3-3.\left(x^2\right)^2.2+3.x^2.2^2-2^3\)
\(=x^5-6x^4+12x^2-8\)
e)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
Pt $\Leftrightarrow (x-4)^3=0\\\Leftrightarrow x-4=0\\\Leftrightarrow x=4$
\(\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)
\(=\left(5x+3y\right)\left[\left(5x\right)^2-5x.3y+\left(3y\right)^2\right]\)
\(=\left(5x\right)^3+\left(3y\right)^3=125x^3-27y^3\)