Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/70-1/70)
C=7x6/70
C=3/5
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}=\frac{3}{5}\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=1\left(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\right)\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/70-1/70)
C=7x6/70
C=3/5
`A=7/(10*11)+7/(11*12)+7/(12*13)+...+7/(69*70)`
`1/7A=1/(10*11)+1/(11*12)+1/(12*13)+..+1/(69*70)`
`1/7A=1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70`
`1/7A=1/10-1/70`
`1/7A=7/70-1/70`
`1/7A=6/70`
`A=3/5`
\(A=\dfrac{7}{10.11}+\dfrac{7}{11.12}+\dfrac{7}{12.13}+...+\dfrac{7}{69.70}\)
\(A=7.\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}+...+\dfrac{1}{69.70}\right)\)
\(A=7\left(\dfrac{11-10}{10.11}+\dfrac{12-11}{11.12}+\dfrac{13-12}{12.13}+...+\dfrac{70-69}{69.70}\right)\)
\(A=7.\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(A=7.\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)
\(A=7.\dfrac{3}{35}=\dfrac{3}{5}\)
F = 1/3.6 + 1/6.9 + 1/9.12 + ... + 1/30.33
F = 1/3.(1.3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)
F = 1/3.(1/3-1/33)
F = 1/3.10/33
F = 10/99
F = 1/ 3.6 + 1/ 6.9 + 1/ 9.12 +...+1/ 30.33
F = 1/3 . ( 1/3 -1/6 + 1/6 - 1/9 + 1/9 - 1/12 + ... + 1/30 - 1/33 )
F = 1/3 . ( 1/3 - 1/33 )
F = 1/3 . 10/ 33
F = 10 /99
\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(F=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{11}\right)\)
\(F=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)
A=.....
=\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+.....+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
MẤY PHẦN SAU CX TÁCH MẪU RA RÙI LÀM NHƯ VẬY
TỰ LÀM NHE
\(B=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+...+\frac{1}{30\cdot33}\)
\(B=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+...+\frac{3}{30\cdot33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(C=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(C=\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{9\cdot10}\right)\)
\(C=9-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)
\(C=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(C=9-\left(1-\frac{1}{10}\right)\)
\(C=9-\frac{9}{10}=\frac{81}{10}\)
a) \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(3F=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\)
\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)
\(3F=\frac{1}{3}-\frac{1}{33}\)
\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}.\frac{1}{3}-\frac{1}{3}.\frac{1}{33}=\frac{1}{9}-\frac{1}{99}=\frac{11}{99}-\frac{1}{99}=\frac{10}{99}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\left(\frac{7}{70}-\frac{1}{70}\right)=7.\frac{6}{70}\)
\(A=\frac{7.6}{70}=\frac{1.6}{10}=\frac{1.3}{5}=\frac{3}{5}\)
a, \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}-\frac{10}{33}\)
\(F=\frac{10}{99}\)