Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
F = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
F = \(\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-\left(\frac{1}{9}-\frac{1}{9}\right)-...-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
F = \(\frac{1}{3}-\frac{1}{99}\)
F = \(\frac{32}{99}\)
\(F=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow F=\frac{32}{99}\)
a) 1/2 +1/6 +1/12 +...+1/72 +1/90
= 1/1.2 + 1/2.3 + 1/3.4 +....+1/8.9 + 1/9.10
= 1/1 -1/2 + 1/2 -1/3 + 1/3 -1/4 +....+1/9- 1/9 + 1/9 -1/10
= 1/1 -1/10
= 9/10
b) 2/3.5 + 2/5.7 + 2/7.9 + 2/9.10
= 2( 1/3.5 + 1/5.7 +1/7.9 + 1/9.10)
= 1/3-1/5 + 1/5- 1/7 +1/7-1/9 +1/9-1/10
= 1/3- /10
= 7/30
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
B=\(\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+......+\frac{6}{99.101}\)
=\(6.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.......+\frac{1}{99.101}\right)\)
=\(6\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{99}-\frac{1}{101}\right)\)
=\(6.\left(1-\frac{1}{101}\right)\)
=\(6.\frac{100}{101}\)
=\(\frac{600}{101}\)
\(C=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{45.47}\)
\(\Rightarrow C=\frac{6}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(\Rightarrow C=3.\left(\frac{1}{3}-\frac{1}{47}\right)\)
\(\Rightarrow C=3.\frac{44}{141}\)
\(\Rightarrow C=\frac{44}{47}\)
\(C=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{45.47}=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{45.47}\right)=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\\ \)
\(=3.\left(\frac{1}{3}-\frac{1}{47}\right)=\frac{3.44}{141}=\frac{44}{47}\)
=3(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+..+1/49-1/51)
=3x50/51=50/17
theo tôi là thế còn các bn
M = \(3\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{49\cdot51}\right)\)\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
M = \(3\left(1-\frac{1}{51}\right)=3\cdot\frac{50}{51}=\frac{50}{17}\)