Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
8 : 8 = 1 16 : 8 = 2 24 : 8 = 3 32 : 8 = 4 40 : 8 = 5 48 : 8 = 6 56 : 8 = 7 64 : 8 = 8 72 : 8 = 9 80 : 8 = 10
8 : 8 = 1
16 : 8 = 2
24 : 8 = 3
32 : 8 = 4
40 : 8 = 5
48 : 8 = 6
56 : 8 = 7
64 : 8 = 8
72 : 8 = 9
80 : 8 = 10
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)