Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có A.5 = 5 ( 1+5 +52 +...........+549 +550)
5A = 5 +52 +53 +............... + 550 +551
5A-A = (5 +52 +53 +............+ 551) - (1+5+52 +......+550)
4A = 551 -1
A =\(\dfrac{5^{51}-1}{4}\)
vậy A =
b, B= \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{\left(2^2\right)^5.\left(3^3\right)^4-2.6^9}{2^{10}.3+6^8.20}\)
=\(\dfrac{2^{10}.3^{12}-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{3^{11}-6}{10}\)
a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8-6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8-\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8-2^{10}.3^8.5}\)
\(A=\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1-5\right)}=\frac{3^8-3^9}{3^8.\left(-4\right)}=\frac{3^8.\left(1-3\right)}{3^8.\left(-4\right)}=\frac{-2}{-4}=\frac{1}{2}\)
Vậy A = \(\frac{1}{2}\)
\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(B=\frac{2^{19}.3^9+3^9.2^{18}.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{7}{2.7}=\frac{1}{2}\)
Vậy B = \(\frac{1}{2}\)
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=-\frac{2}{6}=-\frac{1}{3}\)
\(B=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{11}.2.3^{10}.\left(1+5\right)}{2^{11}.3^{10}.3.\left(6-1\right)}=\frac{12}{15}=\frac{4}{5}\)
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2^2.3^9}{2^{10}.3^8-\left(-\left(2^2.3^8.5\right)\right)}=\frac{2^2.3^9}{-\left(2^2.3^8.5\right)}=-\frac{3}{5}\)
1: \(=5^{20}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\cdot\dfrac{-4}{3}\right)^8-1\)
=1+1-1=1
2: \(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)
=1+9/4
=13/4
3: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{3^8\cdot2^{10}+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{3^8\cdot2^{10}\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
a)
\(5A=5+5^2+.....+5^{101}\)
\(\Rightarrow5A-A=\left(5+5^2+.....+5^{101}\right)-\left(1+5+.....+5^{100}\right)\)
\(\Rightarrow4A=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
b)
\(2B=1+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\frac{1}{2^{100}}\)