Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x3 + 3x2 + 3x - 899
= (x3 + 3x2 + 3x + 1) - 900
= (x + 1)3 - 900
= (29 + 1)3 - 900 = 303 - 900 = 26100
B = x3 - 6x2 + 12x + 10
= (x3 - 6x2 + 12x - 8) + 18
= (x - 2)3 + 18
= (12 - 2)3 + 18 = 103 + 18 = 1000 + 18 = 1018
c) C = 8x3 - 27y3
= (2x)3 - (3y)3
= (2x - 3y)(4x2 + 6xy + 9y2)
= (2x - 3y)(4x2 - 12xy + 9y2) + (2x - 3y).18xy
= (2x - 3y)(2x - 3y)2 + (2x - 3y).18xy
= (2x - 3y)3 + (2x - 3y).18xy
= 53 + 5.18.4
= 125 - 360
= -235
D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)
= (x + y)(x2 - xy + y2) + 3x3y + 3xy3 + 6x2y2
= x2 + y2 - xy + 3x3y + 3xy3 + 6x2y2
= (x + y)2 - 3xy + 3x3y + 3xy3 + 6x2y2
= 1 - 3xy(2xy - 1) + 3xy(x2 + y2)
= 1 - 3xy(x2 + y2 + 2xy - 1)
= 1 - 3xy[(x + y)2 - 1]
= 1 - 0 = 1
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)
\(\Leftrightarrow14x=0\)
\(\Leftrightarrow x=0\)
Vậy pt có nghiệm duy nhất x = 0.
b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)
c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)
d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)
\(\Leftrightarrow41-10x=1\)
\(\Leftrightarrow-10x=40\)
\(\Leftrightarrow x=-4\)
Vậy pt có nghiệm duy nhất x = -4.
e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)
\(\Leftrightarrow8x=-13\)
\(\Leftrightarrow x=-\frac{13}{8}\)
Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)
a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)
b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
\(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x+7\right)\)
\(=\left(2x-5\right).12\)
Những câu khác làm tương tự
a) \(3\left(2x-3\right)+5\left(x+2\right)=6x-9+5x+10=11x+1\)
b) \(3x\left(2x-8\right)+\left(6x+2\right)\left(5-x\right)=6x^2-24x+30x-6x^2+10-2x=4x+10\)
c) \(\left(x-3\right)\left(x+3\right)-\left(x-5\right)^2=x^2-9-x^2+10x-25=10x-34\)
d) \(\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-3x^2y+3xy^2-y^3-x^3+y^3=3xy^2-3x^2y\)
Tk :