Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(-\dfrac{1}{4}\right)^0=1\\-2\dfrac{1}{3^2}=-2+\dfrac{1}{9}=-\dfrac{19}{9}\\0,5^3=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\\-1\dfrac{1}{3^4}=-1+\dfrac{1}{81}=-\dfrac{80}{81}\end{matrix}\right.\)
a) \(\frac{4}{3}-\frac{2}{5}\)
\(=\frac{20}{15}-\frac{6}{15}=\frac{14}{15}\)
b) \(\left|-\frac{1}{10}\right|-\left(-\frac{1}{3}\right)^2\div\frac{5}{9}\)
\(=\frac{1}{10}-\frac{1}{9}\cdot\frac{9}{5}\)
\(=\frac{1}{10}-\frac{1}{5}=\frac{1}{10}-\frac{2}{10}\)
\(=-\frac{1}{10}\)
c) Đề bài có vấn đề!!!
d) \(\left(-0,2\right)^2\cdot5-8^2\cdot\frac{9^4}{3^7}\cdot4^3\)
\(=0,04\cdot5-64\cdot\frac{\left(3^2\right)^4}{3^7}\cdot64\)
\(=0,2-4096\cdot\frac{3^8}{3^7}=0,2-4096\cdot3\)
\(=0,2-12288=-128878\)
a) \(\left(\frac{2}{3}\right)^3=\frac{8}{27}\)
b) \(\left(-\frac{2}{3}\right)^3=-\frac{8}{27}\)
c) \(\left(-1\frac{3}{4}\right)^2=\left(-\frac{7}{4}\right)^2=\frac{49}{16}\)
a.\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
=\(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)
=\(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
=\(\frac{17}{12}.\frac{1}{400}\).
=\(\frac{17}{4800}\)
b.\(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3\)
=\(2:\left(\frac{3}{6}-\frac{4}{6}\right)^3\)
=\(2:\left(\frac{-1}{6}\right)^3\)
=\(2:\left(\frac{-1}{216}\right)\)
=\(\frac{-216.2}{1}\)
=-432.
Mình làm bài tổng quát nha để bạn hiểu sau rồi bạn thay vào .
Đặt \(S_1=1+2+...+n\)
\(\Rightarrow S_1=\frac{n\left(n+1\right)}{2}\)
Đặt \(S_2=1^2+2^2+...+n^2\)
Ta có:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
..................................................................................
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế n thẳng đẳng thức trên ta được :
\(\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+3.\left(1+2+3+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+\frac{3n\left(n+1\right)}{2}+n\)
\(\Rightarrow3.\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
Hay \(3S_2=\left(n+1\right)\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(\Rightarrow3S_2=\left(n+1\right)\left(n^2+\frac{n}{2}\right)\)
\(\Rightarrow3S_2=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Đặt \(S_3=1^3+2^3+...+n^3\)
Ta có:
\(\left(1+1\right)^4=1^4+4.1^3+6.1^2+4.1+1\)
\(\left(2+1\right)^4=2^4+4.2^3+6.2^2+4.2+1\)
........................................................................................
\(\left(n+1\right)^4=n^4+4n^3+6n^2+4n+1\)
Cộng từng vế n đẳng thức trên ta được :
\(\left(n+1\right)^4=1^4+4.\left(1^3+2^3+...+n^3\right)+6.\left(1^2+2^2+...+n^2\right)+4.\left(1+2+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^4=1+4S_3+6S_2+4S_1+n\)
Đã chứng minh \(S_1=\frac{n\left(n+1\right)}{2}\)
\(S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Từ đó tính được :
\(S_3=\frac{n^2\left(n+1\right)^2}{4}\)
đó là công thức giờ chỉ vệc thay vào
\(1^3+2^3+3^3+4^3+5^3=\frac{5^2\left(5+1\right)^2}{4}=225\)
\(\left(\dfrac{2}{3}\right)^5-\left(\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5=\dfrac{32}{243}-\dfrac{9}{16}\left(-1\right)=\dfrac{32}{243}+\dfrac{9}{16}=\dfrac{2699}{3888}\)
a,\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{13}{14}\right)^2\)
\(=\dfrac{169}{196}\)
b,\(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=\left(\dfrac{-1}{12}\right)^2\)
\(=\dfrac{1}{144}\)
c,\(\dfrac{5^4.20^4}{25^5.4^5}\)
\(=\dfrac{100^4}{100^5}\)
\(=\dfrac{1}{100}\)
d,\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4\)
\(=\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-6}{5}\right)^4.\left(\dfrac{-10}{3}\right)\)
\(=\left(\dfrac{\left(-10\right)}{3}.\dfrac{\left(-6\right)}{5}\right)^4.\left(\dfrac{-10}{3}\right)\)
\(=4^4.\left(\dfrac{-10}{3}\right)\)
\(=256.\left(\dfrac{-10}{3}\right)\)
\(=\dfrac{-2560}{3}\)
a.\(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
=\(\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
=\(\left(\frac{13}{14}\right)^2\)
=\(\frac{13^2}{14^2}\)
=\(\frac{169}{196}\)
b.\(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
=\(\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
=\(\left(\frac{-1}{12}\right)^2\)
=\(\frac{-1^2}{12^2}\)
=\(\frac{1}{144}\).
c.Phần C bn viết lại đề bài đi,mk ko hiểu
d.\(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
=\(\frac{-10^5}{3^5}.\left(\frac{-6^4}{5^4}\right)\)
=\(\frac{-100000}{243}.\frac{1296}{625}\)
=\(\frac{-2560}{3}\)
Không biết đúng ko nữa
câu hỏi của bạn là j vậy.