K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

(2 mũ -1+3 mũ -1):(2 mũ -1-3 mũ -1)+(2 mũ-1 x2 mũ 0)x2 mũ 3

=((-2)+(-3)):((-2)-( -3))+((-2)x0)x8

=-5:1+0x8

=-5+0

=-5

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

28 tháng 9 2021

=0 bạn nha

Bài 8:

a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)

b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)

28 tháng 8 2019

1)1/9 x 3x = 2187:81=27

            3x=27:1/9=243=35

            =>x=5

  

28 tháng 8 2019

\(\frac{1}{9}.3^4.3^x=3^7\)

\(\Leftrightarrow3^x=3^7:\frac{1}{9}:3^4=243\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

13 tháng 8 2019

3.

a) \(\left(x-1\right)^3=125\)

=> \(\left(x-1\right)^3=5^3\)

=> \(x-1=5\)

=> \(x=5+1\)

=> \(x=6\)

Vậy \(x=6.\)

b) \(2^{x+2}-2^x=96\)

=> \(2^x.\left(2^2-1\right)=96\)

=> \(2^x.3=96\)

=> \(2^x=96:3\)

=> \(2^x=32\)

=> \(2^x=2^5\)

=> \(x=5\)

Vậy \(x=5.\)

c) \(\left(2x+1\right)^3=343\)

=> \(\left(2x+1\right)^3=7^3\)

=> \(2x+1=7\)

=> \(2x=7-1\)

=> \(2x=6\)

=> \(x=6:2\)

=> \(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

13 tháng 8 2019

Giúp mk với nha các bạn

13 tháng 9 2020

a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)

b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)

c) Đề hơi sai roi bạn oi

d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)

19 tháng 9 2020

Khanh Nguyễn Ngọc  :câu d ko sai bạn nha dấu "/" là trên nhó

28 tháng 10 2021

\(\left\{{}\begin{matrix}\left(-\dfrac{1}{4}\right)^0=1\\-2\dfrac{1}{3^2}=-2+\dfrac{1}{9}=-\dfrac{19}{9}\\0,5^3=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\\-1\dfrac{1}{3^4}=-1+\dfrac{1}{81}=-\dfrac{80}{81}\end{matrix}\right.\)