Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MQ + QN = MN nên MQ = MN - QN = 12,5 - x
ΔPMN có PQ là phân giác
⇔ 8,7.(12,5 – x) = x.6,2
⇔ 108,75 – 8,7.x = 6,2.x
⇔ 108,75 = 14,9x hay 14,9.x = 108,75
⇔ x ≈ 7,3.
a)Vì AD là phân giác của góc BAC
=>\(\dfrac{DC}{BD}=\dfrac{AC}{AB}\) <=>\(\dfrac{x}{3.5}=\dfrac{7.2}{4.5}\) <=>x=\(\dfrac{7.2X3.5}{4.5}\) <=>x=5.6
b)vì PQ là phân giác của góc MPN
=>\(\dfrac{QN}{MQ}=\dfrac{PN}{PM}\) <=>
a) AD là tia phân giác của ∆ABC nên
= => DC = =
=> x = 5,6
b) PQ là đường phân giác của ∆PMN nên =
Hay =
Áp dụng tính chất của tỉ lệ thức:
=> = = =
=> x≈ 7,3
1.Làm tròn số 92,117 đến hàng phần mười được kết quả là:92,1
2.Làm tròn số -845,654 đến hàng phần mười (đến chữ số thập phân thứ nhất) được kết quả là:-845,7
3.Làm tròn số 82,572 đến hàng phần mười được kết quả là:82,6
4.Làm tròn số 82,572 đến hàng phần mười được kết quả là:82,6
5.Làm tròn số -72,882 đến chữ số thập phân thứ nhất được kết quả là:-72,9
Giả sử hình chữ nhật ABCD có AB = b = 5cm; AD= a = 3cm; BD = d.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:
d 2 = a 2 + b 2
⇒ d 2 = 3 2 + 5 2 = 9 + 25 = 34
Vậy (cm).
Theo định lý Py-ta-go :
\(d^2=a^2+b^2=3^2+5^2=34\)
hay \(d=\sqrt{34}\approx5,8\left(cm\right)\)
Giả sử hình chữ nhật ABCD có AB = a = 3cm; BC = b = 5cm; BD = d
Trong tam giác vuông ABC theo định lý Py-ta-go ta có:
d2=a2+b2⇒d2=32+52=9+25=34d=√34≈5,8(cm)
Giả sử tam giác ABC có ∠ A = 90 0 , M trung điểm BC; AB = 5cm, AC = 10cm
Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2
BC = 5 2 + 10 2 = 125 ≈ 11,2 (cm)
Mà AM = 1/2 BC (tính chất tam giác vuông)
⇒ AM = 1/2 .11,2 = 5,6 (cm)
Điều kiện xác định: x ≠ 0 và x ≠ 5.
Tại x = 1,12, giá trị phân thức bằng:
ΔABC có AD là đường phân giác