K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

https://olm.vn/hoi-dap/detail/7291365157.html

tham khảo! bài này mk làm ở đó hơi thieuus bạn chỉ cần + ... là đc

20 tháng 3 2018

a. (x√13+√5)(√7−x√3)=0(x13+5)(7−x3)=0

⇔x√13+√5=0⇔x13+5=0 hoặc √7−x√3=07−x3=0

+ x√13+√5=0⇔x=−√5√13≈−0,62x13+5=0⇔x=−513≈−0,62

+ √7−x√3=0⇔x=√7√3≈1,537−x3=0⇔x=73≈1,53

Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53.

b. (x√2,7−1,54)(√1,02+x√3,1)=0(x2,7−1,54)(1,02+x3,1)=0

⇔x√2,7−1,54=0⇔x2,7−1,54=0 hoặc √1,02+x√3,1=01,02+x3,1=0

+ x√2,7−1,54=0⇔x=1,54√2,7≈0,94x2,7−1,54=0⇔x=1,542,7≈0,94

+ √1.02+x√3,1=0⇔x=−√1,02√3,1≈−0,571.02+x3,1=0⇔x=−1,023,1≈−0,57

Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57


AH
Akai Haruma
Giáo viên
12 tháng 7 2018

1)

ĐK: \(x\geq 2\)

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)

\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)

Vậy $x=2$ là nghiệm của pt

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

2) ĐK: \(x\geq 1\)

Ta có: \(x+\sqrt{x-1}=13\)

\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)

\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)

\(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)

\(\Rightarrow \sqrt{x-1}=3\)

\(\Rightarrow x=3^2+1=10\) (thỏa mãn)

Vậy.......

4 tháng 7 2019

ĐK : \(x\ge3,y\le-7\)

Phương trình thứ nhất <=> \(y=13-x\) thế vào phương trình 2:

\(\sqrt{x-3}+\sqrt{20-x}=5\) 

ĐK: \(3\le x\le20\)

Bình phương hai vế: \(x-3+20-x+2\sqrt{\left(x-3\right)\left(20-x\right)}=25\)

<=> \(\sqrt{\left(x-3\right)\left(20-x\right)}=4\)
<=> \(-x^2+23x-76=0\)

<=> \(\left(x-4\right)\left(x-19\right)=0\)

phương trình tích

tìm đc x => tìm đc y.

16 tháng 7 2015

\(A=\sqrt[3]{\left(\frac{1}{2}+\frac{1}{2}\sqrt{13}\right)^3}+\sqrt[3]{\left(\frac{1}{2}-\frac{1}{2}\sqrt{13}\right)^3}\)

\(=\frac{1}{2}+\frac{\sqrt{13}}{2}+\frac{1}{2}-\frac{\sqrt{13}}{2}=1\)

\(B=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4\)