Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
=> \(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
=> \(\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
+) \(x+\frac{4}{15}=\frac{8}{5}\)
=> \(x=\frac{8}{5}-\frac{4}{15}=\frac{24}{15}-\frac{4}{15}=\frac{20}{15}=\frac{4}{3}\)
+) \(x+\frac{4}{15}=-\frac{8}{5}\)
=> \(x=-\frac{8}{5}-\frac{4}{15}\)
=> \(x=-\frac{24}{15}-\frac{4}{15}=-\frac{28}{15}\)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(|x+\frac{4}{15}|-3,75=-2,15\)
\(|x+\frac{4}{15}|=-2,15+3,75\)
\(|x+\frac{4}{15}|=1,6\)
Ta có : \(|x+\frac{4}{15}|\ge0\forall x\)
\(\Rightarrow|x+\frac{4}{15}|=x+\frac{4}{15}\)
\(\Rightarrow x+\frac{4}{15}=1,6\)
\(x+\frac{4}{15}=\frac{8}{5}\)
\(x=\frac{8}{5}-\frac{4}{15}\)
\(x=\frac{4}{3}\)
| x -1,5| + | 2,5 + x| = 0
ta thấy: \(\left|x-1,5\right|\ge0;\left|2,5+x\right|\ge0\)
Để |x-1,5| + |2,5+x| = 0
=> | x - 1,5| = 0 và | 2,5 + x| = 0
=> x - 1,5 = 0 => x = 1,5 => |2,5+1,5| không bằng 0 ( Loại)
2,5 + x = 0 => x = -2,5 => | -2,5-1,5| không bằng 0 ( Loại)
KL: không tìm được x
\(\left|x-1,5\right|+\left|2,5+x\right|=0\)
Nhận xét \(\left|x-1,5\right|\ge0;\left|2,5+x\right|\ge\Rightarrow\left|x-1,5\right|+\left|2,5+x\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1,5\right|=0\\\left|2,5+x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1,5=0\\2,5+x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}}\)(vô lí)
=> Không tồn tại x
a/
Vì |x - 1,5| ≥ 0
Và |2,5 - x| ≥ 0
=> Để |x - 1,5| + |2,5 - x| = 0 thì
\(\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1,5=1,5\\x=2,5-0=2,5\end{matrix}\right.\)
Vậy để |x - 1,5| + |2,5 - x| = 0 thì x = 1,5 và x = 2,5
b/ \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=0+\frac{1}{2}=\frac{1}{2}\)
Vậy: ...........
c)\(\left(x-2\right)^2=1\\ \Leftrightarrow\left(x-2\right)^2=\left(\pm1\right)^2\\ \Rightarrow x-2\in\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy...
d)\(\left(2x-1\right)^3=-8\\ \Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\\ \Leftrightarrow2x-1=-2\\ \Leftrightarrow x=-\frac{1}{2}\)
Vậy...
I = | x + 1 | + | x + 4 | + | x + 3 |
= | x + 3 | + ( | x + 1 | + | x + 4 | )
Ta có :
+) | x + 3 | ≥ 0 ∀ x (1)
+) | x + 1 | + | x + 4 |
= | x + 1 | + | -( x + 4 ) |
= | x + 1 | + | -x - 4 | ≥ | x + 1 - x - 4 | = | -3 | = 3 (2)
Cộng (1) với (2) theo vế
=> | x + 3 | + ( | x + 1 | + | x + 4 | ) ≥ 3 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+3\right|=0\\\left(x+1\right)\left(-x-4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-4\le x\le-1\end{cases}}\Leftrightarrow x=-3\)
=> MinI = 3 <=> x = -3
\(\left|x+\frac{3}{5}\right|=\left|x-\frac{7}{3}\right|\Rightarrow x+\frac{3}{5}=\left|x-\frac{7}{3}\right|\)
th1 : | x-7/3| =x-7/3 khi x>=7/3
x+3/5=x-7/3
0x=-44/15 ( vô lý)
=> pt vô nghiệm
th2 |x-7/3|=7/3-x khi x<=7/3
x+3/5=7/3-x
2x=26/15
x=13/15 ( tmđk)
x=13/15 là nghiệm của pt
1) Tính nhanh
a) \(6,5+1,2+3,5-5,2+6,5-4,8\)
\(=\left(6,5+3,5\right)-\left(5,2+4,8\right)+\left(1,2+6,5\right)\)
\(=10-10+7,7\)
\(=7,7\)
Vế trái |x.(x-4)| \(\ge\) 0 nên vế phải x \(\ge\) 0.
Do đó |x.(x-4)| = x.(x-4) = x
=> x - 4 = x : x
=> x - 4 = 1
=> x = 5
Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)
Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)
\(\left|x-2,5\right|\ge0.Với\forall x\in R\)
\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)
Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)
\(a.\)
\(\left|0,2x-3,1\right|=6,3\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x-3,1=6,3\\0,2x-3,1=-6,3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x=6,3+3,1\\0,2=-6,3+3,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x=9,4\\0,2x=-3,2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=9,4:0,2\\x=-3,2:0,2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=47\\x=-16\end{array}\right.\)
Vậy : \(x\in\left\{-16;47\right\}\)
\(b.\)
\(\left|12,1x+12,1.0,1\right|=12,1\)
\(\Leftrightarrow\left|12,1.\left(x+0,1\right)\right|=12,1\)
\(\Rightarrow\left[\begin{array}{nghiempt}12,1\left(x+0,1\right)=12,1\\12,1\left(x+0,1\right)=-12,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+0,1=12,1:12,1\\x+0,1=-12,1:12,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+0,1=1\\x+0,1=-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1-0,1\\x=-1-0,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0,9\\x=-1,1\end{array}\right.\)
Vậy : \(x\in\left\{-1,1;-,9\right\}\)
\(c.\)
\(\left|0,2x-3,1\right|+\left|0,2x=3,1\right|=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x-3,1=0\\0,2+3,1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x=0+3,1\\0,2x=0-3,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x=3,1\\0,2x=-3,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3,1:0,2\\x=-3,1:0,2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=15,5\\x=-15,5\end{array}\right.\)
Vậy : \(x\in\left\{-15,5;15,5\right\}\)
a ) \(\left|0,2.x-3,1\right|=6,3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}0,2x-3,1=6,3\\0,2x-3,1=-6,3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}0,2x=9,4\\0,2x=-3,2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=47\\x=-16\end{array}\right.\)
Vậy ........
b ) \(\left|12,1.x+12,1.0,1\right|=12,1\)
\(\Leftrightarrow\left|12,1.\left(x+0,1\right)\right|=12,1\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}12,1.\left(x+0,1\right)=12,1\\12,1.\left(x+0,1\right)=-12,1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x+0,1\right)=1\\\left(x+0,1\right)=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0,9\\x=-1,1\end{array}\right.\)
Vậy ...........................
c ) \(\left|0,2.x-3,1\right|+\left|0,2.x+3,1\right|=0\)
=> \(\left[\begin{array}{nghiempt}0,2x-3,1=0\\0,2x+3,1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}0,2x=3,1\\0,2x=-3,1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=15,5\\x=-15,5\end{array}\right.\)
Vậy .............................
Các bạn làm nhanh nhé vì mình đang cần rất gấp, cảm ơn nhiều!!!
ta có
|x-1,5|>0 với mọi x
|2,5-x|> 0 với mọi x
=> |x-1,5|+|2,5-x|>0
mà theo đề bài ta có
|x-1,5|+|2,5-x|=0
=>\(\hept{\begin{cases}x-1,5=0\\2,5-x=0\end{cases}\left(=\right)\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}}\)
=> x ko tồn tại