Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x-17\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-17=2,3\\x-17=-2,3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=19,3\\x=14,7\end{matrix}\right.\)
b) \(\left|x+\dfrac{3}{4}\right|=0\)
\(\Leftrightarrow x+\dfrac{3}{4}=0\Leftrightarrow x=-\dfrac{3}{4}\)
c) \(\left|x+\dfrac{3}{4}\right|+\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=-\dfrac{1}{3}\)( vô lý do \(\left|x+\dfrac{3}{4}\right|\ge0\forall x\))
Vậy \(S=\varnothing\)
a: =>x*7/4+3/2=-4/5
=>x*7/4=-4/5-3/2=-8/10-15/10=-23/10
=>x=-23/10:7/4=-23/10*4/7=-92/70=-46/35
b: =>x*9/20=1/7+1/8=15/56
=>x=15/56:9/20=15/56*20/9=25/42
c: |x|=3,5
=>x=3,5 hoặc x=-3,5
d: |x|=-2,7
=>x thuộc rỗng
e: =>|x-1|=3-0,73=2,27
=>x-1=2,27 hoặc x-1=-2,27
=>x=-1,27 hoặc x=3,27
f: \(\Leftrightarrow7\cdot11x+11=0\)
=>77x=-11
=>x=-1/7
l: =>|x+3/4|=-2+5=3
=>x+3/4=3 hoặc x+3/4=-3
=>x=-15/4 hoặc x=9/4
a, \(\dfrac{x}{2}+\dfrac{3x}{5}=-\dfrac{3}{2}\Rightarrow5x+6x=-15\Leftrightarrow x=-\dfrac{15}{11}\)
b, TH1 : \(\dfrac{2}{3}x-\dfrac{4}{7}=0\Leftrightarrow x=\dfrac{6}{7}\);TH2 : \(\dfrac{1}{2}-\dfrac{3}{7x}=0\Rightarrow7x-6=0\Leftrightarrow x=\dfrac{6}{7}\)
c, TH1 : \(\dfrac{4}{5}-2x=0\Leftrightarrow x=\dfrac{4}{5}:2=\dfrac{2}{5}\)
TH2 : \(\dfrac{1}{3}+\dfrac{3}{5x}=0\Rightarrow5x+9=0\Leftrightarrow x=-\dfrac{9}{5}\)
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)
b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)
c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{15}=\dfrac{z}{21}\)
mà \(\dfrac{x}{10}=\dfrac{y}{15}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
Bài 4:
a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)
\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)
\(1,25-x=\dfrac{11}{12}\)
\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)
\(x-\dfrac{7}{6}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)
\(x=\dfrac{27}{12}=\dfrac{9}{4}\)
c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)
\(4-\left(2x+1\right)=\dfrac{8}{3}\)
\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)
\(2x+1=\dfrac{20}{3}\)
\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)
\(2x=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)
Bài 15:
a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)
\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)
\(=>x=\left(\dfrac{-2}{3}\right)^8\)
b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)
\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)
\(=>x=\left(\dfrac{4}{9}\right)^9\)
c) \(\left(x+4\right)^3=-125\)
\(\left(x+4\right)^3=\left(-5\right)^3\)
\(=>x+4=-5\)
\(x=-5-4\)
\(=>x=-9\)
d) \(\left(10-5x\right)^3=64\)
\(\left(10-5x\right)^3=4^3\)
\(=>10-5x=4\)
\(5x=10-4\)
\(5x=6\)
\(=>x=\dfrac{6}{5}\)
e) \(\left(4x+5\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)
Bài 16:
a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)
\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)
\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)
b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)
\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)
\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)
c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)
\(=\dfrac{7}{4}.\dfrac{-12}{5}\)
\(=\dfrac{-21}{5}\)
\(#Wendy.Dang\)
a)\(\left|\dfrac{x-1}{3}\right|=\dfrac{11}{5}\Rightarrow\dfrac{x-1}{3}=\pm\dfrac{11}{5}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{x-1}{3}=\dfrac{11}{5}\\\dfrac{x-1}{3}=-\dfrac{11}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{33}{5}\\x-1=\dfrac{-33}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{38}{5}\\x=\dfrac{-28}{5}\end{matrix}\right.\)
a) \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=-\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{12}\\x=-\frac{13}{12}\end{cases}}\)
c) \(\left|x+\frac{1}{4}\right|-\frac{3}{4}=0\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{3}{4}\\x+\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
d) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
e) \(\left|4+2x\right|+4x=0\)
\(\Leftrightarrow\left|4+2x\right|=-4x\)
\(\Leftrightarrow\orbr{\begin{cases}4+2x=-4x\\4+2x=4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}-6x=4\\2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)