Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+(-3)+4+(-5)+.....+2008+(-2009)+2010+(-2011)+2012
=2-3+4-5+....+2008-2009+2010-2011+201s
=(2-3)+(4-5)+....+(2008-2009)+(2010-2011)+2012
=-1 + -1 +.....+ -1 +-1 + 2012 ( có 1005 số 1)
= -1 * 1005 + 2012
= -1005 + 2012
=1007
đây nhé!!
1+2-3-4+5+6-7-8+9+10-........+2010-2011-2012+2013+2014-2015-2016+2017
=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+....+(2010-2011-2012+2013)+(2014-2015-2016+2017)
=1+0+0+0+.....+0+0
=1.
ĐÚNG THÌ CHO MINK NHA!!^_^
\(S=2+\left(-3\right)+4+\left(-5\right)+...+2010+\left(-2011\right)\) ( có 2010 số hạng)
\(S=\left[2+\left(-3\right)\right]+\left[4+\left(-5\right)\right]+...+\left[2010+\left(-2011\right)\right]\)(có 1005 nhóm)
\(S=-1+\left(-1\right)+...+\left(-1\right)\)(có 1005 số -1)
\(S=-1.1005\)
\(S=-1005\)
Bạn gộp tổng các số nguyên âm lại rồi cộng tất cả với các số nguyên dương còn lại.
Mong bạn k cho mình !!!
Chú ý Q nhé
Bạn tách Q ra thành \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Mỗi số hạng của Q đều nhỏ hơn mỗi số hạng có cùng tử tương ứng của P ( do mẫu lớn hơn )
Vậy P>Q
Tách Q ra thành tổng 3 phân số có cùng mẫu là 2011+2012+2013.
Sau đó so sánh mỗi phân số của Q với 1 phân số của P,ta thấy P>Q.
Số số hạng của A :
( 2013 - 1 ) : 1 + 1 = 2013
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2009 + 2010 - 2011 - 2012 + 2013
A = ( 1 - 3 ) + ( 2 - 4 ) + ( 5 - 7 ) + ( 6 - 8 ) + ... + ( 2009 - 2011 ) + ( 2010 - 2012 ) + 2013
A = -2 + ( -2 ) + ( -2 ) + ( -2 ) + ... + ( -2 ) + ( -2 ) + 2013
A = -2 . [ ( 2013 - 1 ) : 2 ] + 2013
A = -2 . 1006 + 2013
A = -2012 + 2013
A = 1
A=(1-2-3+4)+(5-6-7+8)+...+(2009-2010-2011+2012)+2013
A=0+0+0+...+0+2013
A=2013
S có số số hạng là:(2014-2):1+1=2013(số hạng)
Mà 2013=1+2X1006 nên ta nhóm như sau:
\(S=2+\left[\left(-3\right)+4\right]+\left[\left(-5\right)+6\right]+...+\left[\left(-2013\right)+2014\right]\)
\(=2+1+1+...+1=2+1006\times1=1008\)
Vậy S=1008
Ta có :\(S=\) \(2+\left(-3\right)+4+\left(-5\right)+...+\left(-2013\right)+2014\)
\(=\left[2+\left(-3\right)\right]+\left[4+\left(-5\right)\right]+...+\left[2012+\left(-2013\right)\right]+2014\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+2014\)( có 2012 só (-1 ) )
\(=\) \(\left(-1\right).2012+2014\)
\(=\left(-2012\right)+2014\)
\(=2\)
Vậy \(S=2\)