Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(=1-\dfrac{6}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)
\(Q=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)
a, Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{21}\)
\(\Leftrightarrow2A=\dfrac{20}{21}\)
\(\Leftrightarrow A=\dfrac{10}{21}\)
b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)
\(\Leftrightarrow A=\dfrac{n}{2n+1}\)
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+............+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+.........+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
a) A = 2x6 + (-5x3) + ( -3x5) + x3 + \(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\)) + 8 + ( -3x)
= 2x6 + ( -3x5) + [(-5x3) + x3 ]+ [\(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\))] + ( -3x) + 8
= 2x6 – 3x5 – 4x3 +\(\dfrac{1}{{10}}\)x2 – 3x + 8
b) Hệ số cao nhất: 2
Hệ số tự do: 8
Hệ số của x2 là: \(\dfrac{1}{{10}}\)
\(A=\left(-\dfrac{2}{3}x^3y^4\right)^2.\left(-3x^5y^2\right)^3\)
\(A=\left(\dfrac{4}{9}x^6y^8\right).\left(-27x^{15}y^6\right)\)
\(A=\left(\dfrac{4}{9}.-27\right)\left(x^6.x^{15}\right)\left(y^8.y^{16}\right)\)
\(A=-12x^{21}y^{24}\)
\(\text{Hệ số:-12}\)
\(\text{Bậc:45}\)
\(B=\left(3x^2y\right).\left(-\dfrac{1}{3}x^3y\right).\left(-\dfrac{1}{4}x^3y^4\right)\)
\(B=\left(3.-\dfrac{1}{3}.-\dfrac{1}{4}\right).\left(x^2.x^3.x^3\right).\left(y.y.y^4\right)\)
\(B=\dfrac{1}{4}x^8y^6\)
\(\text{Hệ số:}\dfrac{1}{4}\)
\(\text{Bậc:14}\)
`2/[3.5]+2/[5.7]+2/[7.9]+....+2/[19.21]`
`=1/3-1/5+1/5-1/7+1/7-1/9+....+1/19-1/21`
`=1/3-1/21`
`=6/21`