Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 1+7+72+73+...+710
7A = 7+72+73+74+...+711
6A = 7A - A = 711 - 1
=> A = \(\frac{7^{11}-1}{6}\)
b, B = 1+3+32+33+...+3100
3B = 3+32+33+34+....+3101
2B = 3B - B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
\(A=1+6+6^2+6^4+...+6^{100}\)
\(\Rightarrow6A=6+6^2+6^4+...+6^{100}+6^{101}\)
\(\Rightarrow6A-A=\left(6+6^2+6^4+....+6^{102}\right)-\left(1+6+6^2+6^4+...+6^{100}\right)\)
\(\Rightarrow5A=6^{101}-1\)
\(\Rightarrow A=\frac{6^{101}-1}{5}\)
a, \(A=1+2+2^2+....+2^{56}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{56}\right)\)
\(\Rightarrow2A=2+2^2+2^3+....+2^{56}+2^{57}\)
\(\Rightarrow2A-A=2^{57}-1\)
\(\Rightarrow A=2^{57}-1\)
Câu b làm tương tự nha bạn
c, \(C=1-3+3^2-3^3+....+3^{98}-3^{99}\)
\(\Rightarrow3C=3-3^2+3^3-...-3^{98}+3^{99}-3^{100}\)
\(\Rightarrow3C+C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
a)\(A=1+2+2^2+...+2^{56}\)
\(2A=2+2^2+2^3+2^4+...+2^{57}\)
\(2A-A=2+2^2+2^3+2^4+...+2^{57}-1-2-2^2-2^3-...-2^{56}\)
\(A=2^{57}-1\)
b)\(B=1+3^1+3^2+...+3^{100}\)
\(3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2B=3^{101}-1\)
\(B=\frac{3^{101}-1}{2}\)
c)\(C=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3C=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3C+C=1-3^{100}\)
\(\Rightarrow4C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
A =1+3+32 +33 +...+ 3100
3A=3.(30+3+32 +33 +...+ 3100)
3A=31+32 +33 +...+ 3101
3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)
2A=3101-30
A=(3101-1) :2
vậy A=(3101-1) :2
t.i.c cho mình nha