K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6S = 1.3(5 - 1) + 3.5(7 - 1) + 5.7(9 - 3) + ... + 99.101(103 - 97)

6S = 1.3 + 1.3.5 - 1.3.5 + 3.5.7 - 3.5.7 +..... - 97.99.101 + 99.101.103

6S = 3 + 99.101.103

6S = 3 + 1029897

6S = 1029900

S =1029900 : 6

S = 171650

13 tháng 9 2018

Ta có S=1.(1+2)+3.(3+2)+5.(5+2)+....+99.(99+2)

=1.1+3.3+5.5+....+99.99 +1.2+3.2+5.2+...+99.2

=12+32+52+...+992+2.(1+3+5+....+99 )

=1.(2-1)+3.(4-1)+5.(6-1)+...+99.(100-1)+2.(1+3+5+...+99)

=1.2+3.4+5.6+...+99.100-1-3-5-....-99+2.(1+3+5+...+99)

=1.2+3.4+5.6+...+99.100+(1+3+5+...+99)

Xét 1.2+3.4+5.6+...+99.100 = (2-1).2+(4-1).4+(6-1).6+....+(100-1).100

=2.2+4.4+6.6+100.100-2-4-6-...-100

=22+42+62+...+1002-(2+4+6+...+100)

=22.(12+22+32+...+502)-(100+2).50:2

=22.22100-2550 ( bạn tự làm thêm 12+22+...+1002=22100 nhé )

=85850

Do đó S= 85850-(99+1).50:2=85850-2500=83350

16 tháng 6 2015

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

16 tháng 6 2015

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

28 tháng 1 2017

chuẩn quá

28 tháng 1 2017

uk, tết mà chẳng có gì thú vị

7 tháng 9 2016

S =2706800 ban nhe 

k cho mình đi mình viết công thức cho

10 tháng 9 2016

Bạn giải chỉ tiết ra đi. Nêu bạn giải chi tiết mình tích đúng cho

3 tháng 2 2017

bai nay sai de

3 tháng 2 2017

1.3+3.5+5.7+......+99.101

=1-101

=-100

ko biết đúng hay sai 

8 tháng 10 2019

A = 1×3+3×5+5×7+...+ 97×99+99×101

 6A= 1×3×6+3×5×6+5×7×6+...+97×99×6+99×101×6

6A= 1×3×(5+1)+3×5×(7-1)+5×7×(9-3)+...+97×99×(101-95)+99×101×(103-97)

6A = 1×3×5-1×3+3×5×7-1×3×5+5×7×9-3×5×7+7×9×11-5×7×9+,,,+97×99×101-95×97×99+99×101×103-97×99×101

6A= 1×3+99×101×103

6A= 1029900

A= 171650

28 tháng 7 2023

171650

13 tháng 8 2016

Đặt biểu thức là A

=> \(A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}.\frac{100}{101}\)

=> \(A=\frac{250}{101}\)

13 tháng 8 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)