Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{61.66}\)
\(B=\dfrac{5}{5}\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\right)\)
\(B=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(B=\dfrac{1}{11}-\dfrac{1}{66}\)
\(B=\dfrac{6}{66}-\dfrac{1}{66}=\dfrac{5}{66}\)
Đặt:
\(A=\dfrac{7}{11\cdot16}+\dfrac{7}{16\cdot21}+\dfrac{7}{21\cdot26}+...+\dfrac{7}{61\cdot66}\)
\(\dfrac{5}{7}A=\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{61\cdot66}\)
\(\dfrac{5}{7}A=\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{61}-\dfrac{1}{66}\)
\(\dfrac{5}{7}A=\dfrac{1}{11}-\dfrac{1}{66}=\dfrac{6}{66}-\dfrac{1}{66}=\dfrac{5}{66}\)
\(A=\dfrac{5}{66}\cdot\dfrac{7}{5}=\dfrac{7}{66}\)
\(B=\frac{5}{11.13}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{66}\)
\(\Rightarrow B=\frac{5}{66}\)
P/s: làm từng phần một
1.
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
2.
\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{56}{305}\)
\(A=\frac{112}{305}\)
a) \(A=\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+...+\dfrac{5^2}{56.61}\)
\(A=5^2.\left(\dfrac{1}{11.16}+\dfrac{1}{16.21}+\dfrac{1}{21.26}+...+\dfrac{1}{56.61}\right)\)
\(A=\left(5^2:5\right).\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+...+\dfrac{5}{56.61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+...+\dfrac{1}{56}-\dfrac{1}{61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{61}\right)\)
\(A=5.\dfrac{50}{671}\)
\(Á=\dfrac{250}{671}\)
b: \(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)
D=\(\dfrac{4}{11\cdot16}\)+\(\dfrac{4}{16\cdot21}\)+...+\(\dfrac{4}{61\cdot66}\)
D=\(\dfrac{4}{5}\)(\(\dfrac{1}{11}\)-\(\dfrac{1}{16}\)+\(\dfrac{1}{16}\)-\(\dfrac{1}{21}\)+...+\(\dfrac{1}{61}\)-\(\dfrac{1}{66}\))
D=\(\dfrac{4}{5}\)(\(\dfrac{1}{11}\)-\(\dfrac{1}{66}\))
D=\(\dfrac{4}{5}\)x\(\dfrac{5}{66}\)=\(\dfrac{2}{33}\)