Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng thứ 50 của dãy là: \(\frac{1}{100.102}\)
Tổng 50 số hạng đầu của dãy là:\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{100.102}=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{102}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{25}{51}=\frac{25}{102}\)
phân số thứ 50 là 1/98.100
1/2.4+1/4.6+1/6.8+.......+1/98.100
=2.(1/2-1/4+1/4-1/6+1/6-1/8+.........+1/98-1/100).1/2
=(1-1/2+1/2-1/3+1/3-1/4+...........+1/49-1/50).1/2
=(1-1/50).1/2
=49/50.1/2
=49/100
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{2}\cdot\dfrac{4}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)
A=\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{20\cdot22}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{20}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{11}{22}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{5}{11}\)
\(=\dfrac{5}{22}\)
Ta có: \(F=\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(F=2.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2008.2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(F=1-\dfrac{1}{1005}=\dfrac{1004}{1005}\)
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{7\cdot9}+\dfrac{1}{6\cdot8}\)
\(=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{7\cdot9}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{7\cdot9}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{9}{9}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{4}{8}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}+\dfrac{1}{2}\cdot\dfrac{3}{8}\)
\(=\dfrac{1}{2}\left(\dfrac{8}{9}+\dfrac{3}{8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{64}{72}+\dfrac{27}{72}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{91}{72}\)
\(=\dfrac{91}{144}\)
S=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{6.8}\)
S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{2}+...+\dfrac{1}{6}-\dfrac{1}{8}\right)\)
S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{8}\right)\)
S=\(\dfrac{1}{2}.\left(\dfrac{8-1}{8}\right)\)
S=\(\dfrac{1}{2}.\dfrac{7}{8}\)
S=\(\dfrac{7}{16}\)
\(A=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{48.50}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(=2\times\dfrac{12}{25}=\dfrac{24}{25}\)
\(=>A=4.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{46}-\dfrac{1}{48}+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=4.\left(\dfrac{25}{50}-\dfrac{1}{50}\right)=\dfrac{4.24}{50}=\dfrac{48}{25}\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{48.50}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{48.50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{50-48}{48.50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{24}{50}=\dfrac{6}{25}\)