Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
\(1-2+3-4+...+2019-2020\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(2019-2020\right)\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right).1010=-1010\)
Chúc em học tốt!!!
Có 2 cách làm nha bạn kia cũng đúng đó
SCSH: ( 2020 - 1 ) : 1 + 1 = 2020
Tổng: ( 2020 + 1 ) . 2020 : 2 = 2041210
Cách nào cũng đúng nha
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2019\cdot2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}\)
\(=\frac{2019}{2020}\)
Ta có :
B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)
B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\) (1)
Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)
Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)
Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)
S= 2+(-3)+4+(-5)+6+(-7)+............ + 2016+(-2017)+2018+(-2019)+2020
S=[2+(-3)]+[4+(-5)]+[6+(-7)]+...+[2016+(-2017)]+[2018+(-2019)]+2020
S=-1+(-1)+(-1)+...+(-1)+2020 (Có 1009,5 số -1 )
S=-1.1009,5+2020
S=-1009,5+2020
S=1010,5
\(2T=2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2020}{2^{2018}}+\dfrac{2021}{2^{2019}}\)
\(T=2T-T=2+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}\).
Đặt \(S=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\Rightarrow2S=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2018}}\Rightarrow S=2S-S=1-\dfrac{1}{2^{2019}}\).
Từ đó \(T=2+1-\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}< 3\).
S = 1 - 2 + 3 - 4 + ... + 2019 - 2020
S = ( - 1 ) + ( - 1 ) + ... + ( - 1 ) . Có 1010 chữ số ( - 1 )
S = ( - 1010 )
a)S=1-2+3-4+...+2019-2020 có số số hạng:(2020-1):1+1=2020(số hạng)
S=(1-2)+(3-4)+...+(2019-2020)
S= (-1)+(-1)+...+(-1)
S= (-1x2020):2
S= -6060
b)P=0-2+4-6+...+2016-2018 có số số hạng:(2018-0):2+1=1010(số hạng)
P=(0-2)+(4-6)+...+(2016-2018)
P= (-2)+(-2)+...+(-2)
P= (-2x1010):2
P= -1010
Chúc bn hok tốt!!!!