Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có V = π ∫ 0 π − sin x 2 d x = π ∫ 0 π sin 2 x d x
Giải phương trình:
Phương trình (1) có tối đa 1 nghiệm. Mà f π = 0 ⇒ x = π là nghiệm duy nhất của (1).
Thể tích khối tròn xoay tạo thành là:
Mà
Chọn A.
Đáp án D
Thể tích khối tròn xoay cần tính là
V = π ∫ 0 π sin 2 2 x d x = π ∫ 0 π 1 − cos 4 x 2 d x = π 2 x − 1 4 sin 4 x 0 π = π 2 π − 0 = π 2 2 .
Đáp án C
Thể tích khối tròn xoay cần tính là V H = π . ∫ 1 k lnx d x ⇒ I = ∫ 1 k lnx d x .
Đặt u = ln x d v = d x ⇔ d u = d x x v = x suy ra I = x . ln x 1 k - ∫ 1 k d x = x . ln x - 1 1 k = k . ln k - 1 + 1 .
Mặt khác V H = π . I = π ⇒ I = 1 suy ra k . ln k - 1 + 1 = 1 ⇔ k . ln k - 1 = 0 ⇔ k = e .
\(\left(C_1\right)\) có dạng \(y=x^3-3x\)
Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2
ta tính \(y'=3x^2-3\)
gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm
phương trình tiếp tuyến tại điểm B có dạng
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)
suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)
do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có
\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)
từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)
để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt
suy ra pt (**) có 2 nghiệm phân biệt khác -1
từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1
suy ra đc tập hợ điểm A để thỏa mãn đk bài ra
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án B
Ta có x = 0 ⇔ x = 0 x − 2 = 0 ⇔ x = 2 x = x − 2 ⇔ x = 4 x ≥ 0 .
Thể tích vật thể tròn xoay cần tính là: V = π ∫ 0 2 x 2 d x + π ∫ 2 4 x 2 − x − 2 2 d x = 16 π 3