Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)
\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)
Thay a vào P để tính.
Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)
\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)
\(\Leftrightarrow a^3-3a-110=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)
\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)
Bài 1:
$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$
$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$
$\Leftrightarrow a^3=110+3a$
$\Leftrightarrow a^3-3a-110=0$
$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$
$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$
$\Leftrightarrow (a-5)(a^2+5a+22)=0$
Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$
Vậy........
$a=
Bài 2:
Bạn xem tại đây:
Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến
Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
1
\(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\\ =2\sqrt{49.2}-3\sqrt{9.2}+\dfrac{1}{2}\sqrt{16.2}\\ =2\sqrt{7^2.2}-3\sqrt{3^2.2}+\dfrac{1}{2}\sqrt{4^2.2}\\ =2.7\sqrt{2}-3.3\sqrt{2}+\dfrac{1}{2}.4\sqrt{2}\\ =14\sqrt{2}-9\sqrt{2}+2\sqrt{2}\\ =\left(14-9+2\right)\sqrt{2}\\ =7\sqrt{2}\)
2
\(\sqrt{\dfrac{2+\sqrt{3}}{2}}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)}{2}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{2\left(2+\sqrt{3}\right)}}{2}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{2}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}-\dfrac{\sqrt{3}}{2}\\ =\dfrac{\sqrt{3}+1-\sqrt{3}}{2}=\dfrac{1}{2}\)
2: Chiều cao của tòa nhà là:
15*sin55\(\simeq\)12,29(m)
1:
a: =2*7căn 2-3*3căn 2+1/2*4căn 2
=7căn 2
b: \(=\sqrt{\dfrac{4+2\sqrt{3}}{4}}-\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}+1}{2}-\dfrac{\sqrt{3}}{2}=\dfrac{1}{2}\)
a) \(\sqrt{11+2\sqrt[]{18}}\)
\(=\sqrt{11+6\sqrt[]{2}}\)
\(=\sqrt{9+2.3\sqrt[]{2}+2}\)
\(=\sqrt{\left(3+\sqrt[]{2}\right)^2}=\left|3+\sqrt[]{2}\right|=3+\sqrt[]{2}\)
b) \(\sqrt[]{7+2\sqrt[]{10}}\)
\(=\sqrt[]{7+2\sqrt[]{5}.\sqrt[]{2}}\)
\(=\sqrt[]{5+2\sqrt[]{5}.\sqrt[]{2}+2}\)
\(=\sqrt[]{\left(\sqrt[]{5}+\sqrt[]{2}\right)^2}=\left|\sqrt[]{5}+\sqrt[]{2}\right|=\sqrt[]{5}+\sqrt[]{2}\)
c) \(\sqrt[]{7+4\sqrt[]{3}}\)
\(=\sqrt[]{4+2.2\sqrt[]{3}+3}\)
\(=\sqrt[]{\left(2+\sqrt[]{3}\right)^2}=\left|2+\sqrt[]{3}\right|=2+\sqrt[]{3}\)
d) \(\sqrt[]{16-2\sqrt[]{55}}\) \(\left(12\rightarrow16\right)\)
\(=\sqrt[]{11-2\sqrt[]{5}.\sqrt[]{11}+5}\)
\(=\sqrt[]{\left(\sqrt[]{11}-\sqrt[]{5}\right)^2}==\left|\sqrt[]{11}-\sqrt[]{5}\right|=\sqrt[]{11}-\sqrt[]{5}\left(\sqrt[]{11}>\sqrt[]{5}\right)\)
Casio cho kết quả \(\frac{5+\sqrt{21}}{2}\)
Bạn tự lập phương rồi tách ngược là được