Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Số số hạng là (99-1):1+1=99(số)
Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)
1:
3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]
=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)
=n(n+1)*(n+2)
=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
a) Ta có:
\(S=1+4+7+...\)
Lần lượt các số hạng là:
\(1=0\cdot3+1\)
\(4=1\cdot3+1\)
\(7=2\cdot3+1\)
....
Số hạng thứ 50 là:
\(49\cdot3+1=148\)
b) Tổng 50 số hạng
\(\left(148+1\right)\cdot50:2=3725\)
nhận thấy: các số hạng của D đều cách nhau 2 đv
Số số hạng: (998-10):2+1=495 (số hạng)
=>\(D=\frac{\left(998+10\right).495}{2}=249480\)
làm vậy có phải nhanh hơn ko?
a) gọi tổng của 1002 số hạng đầu tiên là A , ta có:
A=[1+(-5)] + [ 9 + (-13) ] + .......+ [ x + ( -x -4 ) ] CÓ 1002 :2 = 502 CẶP
A= (-4) + (-4 )+.........+(-4) CÓ 502 SỐ -4
=> A= (-4) . 502 = -2008
vậy tổng 1002 số hạng đàu tiên là 2008
a) với n chẵn thì A = \(-4.\frac{n}{2}=-2n\)
với n lẻ thì A = 1 + \(\frac{4.\left(n-1\right)}{2}=1+2\left(n-1\right)=2n-1\)
b) số hạng thứ n của dãy là :
( -1 )n-1 ( 4n - 3 ) hoặc ( -1 )n+1 ( 4n - 3 )
Số hạng thứ N của tất cả các câu trên là \(\infty\)
Tổng của tất cả các câu trên là \(\infty\)