K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

3S=1.2.(3-0)+2.3.(4-1)+...+99.100(101-98)

3S=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100

3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)

3S=99.100.101-0.1.2

3S=99.100.101

S=\(\frac{99.100.101}{3}=333300\)

14 tháng 9 2017

S = 1 . 2 + 2 . 3 + 3 . 4 + ...... + 99 . 100 

Gấp S lên 3 lần ,ta có: 

S . 3 = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + … + 99 . 100 . 3 

S . 3 = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + … + 99 . 100 . ( 101 - 98 ) 

S . 3 = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + … + 99 . 100 . 101 - 98 . 99 . 100 

S . 3 = 99 . 100 . 101 

S = 99 . 100 .101 : 3 

S = 33 . 100 . 101 

S = 333300

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

chúc bạn học tốt

17 tháng 12 2018

A = 1.2 + 2.3 + 3.4 +...+ n.(n+1)

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ n.(n+1).3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ n.(n+1).[(n+2)-(n-1)]

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...+ n.(n+1).(n+2) - (n-1).n.(n+1)

3A = n.(n+1).(n+2)

A = n.(n+1).(n+2)/3

1 tháng 12 2017

Đặt tổng trên = A

Có : 3A = 1.2.3+2.3.3+....+98.99.3

 = 1.2.3+2.3.(4-1)+.....+98.99.(100-97)

 = 1.2.3+2.3.4-1.2.3+.....+98.99.100-97.98.99

 = 98.99.100

=> A = 98.99.100/3 = 323400

k mk nha

1 tháng 12 2017

Gọi A = 1.2 + 2.3 + .. + 98.99

3A = 1.2.3 + 2.3.3 + ... + 98.99.3

3A = 1.2.3 + 2.3.(4 - 1) + ... + 98.99.(100 - 97)

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 98.99.100 - 97.98.99

3A = 98.99.100

3A = 970200

A = 323400

7 tháng 7 2016

\(S=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)

\(S=\frac{\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}}{1.2+2.3+3.4+...+98.99}\)

\(s=\frac{1}{2}\)

Chắc pn wên mik rồi: (nhớ cái này đi: gxjghfgyh) 

7 tháng 7 2016

Nhưng biết có ai trả lời hay không