K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

Tính P = 11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+2021

Chúc bạn học tốt nhé

 

15 tháng 3 2022

P=1+1/3+1/6+1/10+…..+1/2021×2022÷2

P/2=1/2+1/6+1/12+1/20+…..+1/2021×2022

P/2=1/1×2+1/2×3+1/3×4+…….+1/2021×2022

P/2=1-1/2+1/2-1/3+1/3-1/4+….+1/2021-1/2022=1-1/2022=2021/2022

P=2021/1011

Chúc bn học tốt

22 tháng 4 2017

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)

= \(\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+1-\dfrac{1}{4}+...+1-\dfrac{1}{100}}\)

= \(\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\)

=\(\dfrac{2.\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\)

Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)= 2

12 tháng 4 2017

a)=648

12 tháng 4 2017

c) gọi biểu thức là S = 2 + 2\(^2+2^3+.....+2^{50}\)

2S=2\(^2+2^3+2^4+......+2^{50}+2^{51}\)

\(2S-S=S=2^{51}-2\)

b) \(1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\)

= \(2+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^9}\)

2S-S=S=(\(2+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^9}\))-( \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\))

bạn tự tìm S nhé

mink làm được như thế đó, phần a mink không muốn nhấn mỏi tay bạn ạ, đừng nghĩ mink ko biết làm nha

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

11 tháng 2 2023

A= 1/3 + 1/3^2 + ... + 1/3^8

3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)

3A=1+ 1/3 + 1/3^2+ ... +1/3^7

=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)

=> 2A= 1 - 1/ 3^8

2A= 6560/6561

A= 6560/6561 : 2

A= 3280/6561

11 tháng 2 2023

nè bạn

 

25 tháng 6 2018

\(\dfrac{1}{A}=\dfrac{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)

\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)

\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{3.4+2.4-2.3}{2.3.4}}\)

\(\dfrac{1}{A}=\dfrac{1}{3.4+2.4-2.3}\)

\(\dfrac{1}{A}=1-\dfrac{1}{14}\) \(=\dfrac{13}{14}\)

\(A=\dfrac{14}{13}\)

25 tháng 6 2018

Cách 2:

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) ( 1 )

Có: \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\)\(=\dfrac{12}{24}+\dfrac{8}{24}-\dfrac{6}{24}=\dfrac{14}{24}\)

Thay \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\) \(=\dfrac{14}{24}\) vào ( 1 ), ta có:

\(\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{24}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{13}{24}}\) \(=\dfrac{14}{24}:\dfrac{13}{24}=\dfrac{14.24}{13.24}=\dfrac{14}{13}\)

Vậy \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{14}{13}\).

5: \(=\left(1+2+3+4-3-2-1\right)+\left(-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)\)

\(=4+\left(-1-1-1\right)=4-3=1\)

6: \(=\dfrac{25-49}{35}-\left[\dfrac{1}{2}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)

\(=\dfrac{-24}{35}-\dfrac{35+20+7}{70}\)

\(=\dfrac{-24}{35}-\dfrac{62}{70}=\dfrac{-48-62}{70}=-\dfrac{110}{70}=-\dfrac{11}{7}\)

3 tháng 4 2017

\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)

=\(\dfrac{13}{12}+\dfrac{1}{4}\)

=\(\dfrac{16}{12}\)

15 tháng 5 2017

Bài làm :

Tính chất cơ bản của phép cộng phân số

17 tháng 8 2018

\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)

\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)

\(D=1+-1+\dfrac{1}{41}\)

\(D=0+\dfrac{1}{41}\)

\(D=\dfrac{1}{41}\)

\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)

=1/57

\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)