K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

7 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)

\(1-\frac{1}{x+1}=\frac{499}{500}\)

\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)

=> x + 1 = 500

=> x = 500 - 1

=> x = 499

Vậy x = 499

7 tháng 8 2016

1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500

1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500

1-1/(x+1)=499/500

=>x/(x+1)=499/500

=>x=499

23 tháng 1 2016

Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

13 tháng 7 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{y\times\left(y+1\right)}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{y}-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow\frac{1}{y+1}=1-\frac{996}{997}=\frac{1}{997}\)

\(\Leftrightarrow y+1=997\Leftrightarrow y=996\)

Vậy y = 996

13 tháng 7 2018

1/1×2 + 1/2×3 + 1/3×4 + ... + 1/ y x (y+1) =996/997

1-1/2+1/2-1/3+1/3-1/4+...+1/y - 1/y+1 =996/997

1-1/y+1=996/997

1/ y+1 =1-996/997

1/y+1 = 997/997-996/997

1/y+1=1/997

=> y+1 =997

y=997-1

y=996

Vậy y = 996

9 tháng 9 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)\(=\frac{24}{50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x.1}\)=\(\frac{24}{50}\)

=\(\frac{1}{2}-\frac{1}{x.1}=\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{2}-\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{50}\)

\(\Rightarrow\)\(x.1=50\)

\(\Rightarrow x=50\)

19 tháng 4 2018

a) Cho:  \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

\(\Rightarrow3A-A=3-\frac{1}{81}\)

\(\Rightarrow A=\frac{3-\frac{1}{81}}{2}\)

\(A=\frac{121}{81}\)

b) \(37,52+4,7\times2,3-9,8\)

\(=37,52+10,81-9,8\)

\(=38,53\)

Chúc bn học tốt !!!!!

23 tháng 6 2017

Nhân 2 cả 2 vế lên:

\(\left(2x+\frac{2}{1x3}\right)+...+\left(2x+\frac{2}{23x25}\right)=22x+\frac{2}{3}+\frac{2}{9}+\frac{2}{81}+\frac{2}{243}\)2/243

\(24x+\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{23}-\frac{1}{25}\right)=22x+\frac{162+54+6+2}{243}\)

\(24x+\frac{24}{25}=22x+\frac{224}{243}\)

\(2x=\frac{224}{243}-\frac{24}{25}\)

\(2x=-\frac{232}{6025}\)

\(x=\frac{-116}{6075}\)

23 tháng 6 2017

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}\right)\)

\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]=11.x+\left(\frac{81}{243}+\frac{27}{243}+\frac{3}{243}+\frac{1}{243}\right)\)

\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)\right]=11.x+\frac{112}{243}\)

\(12x+\left(\frac{1}{2}.\frac{24}{25}\right)=11.x+\frac{112}{243}\)

\(12x+\frac{12}{25}=11x+\frac{112}{243}\)

\(11x-12x=\frac{112}{243}-\frac{12}{25}\)

\(-1x=-\frac{116}{6075}\)

\(x=-\frac{116}{6075}\div\left(-1\right)\)

\(x=\frac{116}{6075}\)