K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(F=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

\(F=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

\(F=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(F=\frac{1}{9}\left(1-\frac{1}{11}\right)\)

\(F=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)

a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{47}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)

b: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(=2\cdot\dfrac{1004}{2010}=\dfrac{2008}{2010}=\dfrac{1004}{1005}\)

c: \(S=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+...+\dfrac{1}{30\cdot33}\)

\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)

29 tháng 4 2016

F = 1/3.6 + 1/6.9 + 1/9.12 + ... + 1/30.33

F = 1/3.(1.3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)

F = 1/3.(1/3-1/33)

F = 1/3.10/33

F = 10/99

30 tháng 4 2016

F = 1/ 3.6 + 1/ 6.9 + 1/ 9.12 +...+1/ 30.33

F = 1/3 . (  1/3 -1/6 + 1/6 - 1/9 + 1/9 - 1/12 + ... + 1/30 - 1/33 )

F = 1/3 . ( 1/3 - 1/33 )

F = 1/3 . 10/ 33

F = 10 /99

1 tháng 5 2016

1/18+1/54+1/108+……+1/810+1/990

=(1/3-1/6+1/6-1/9+1/9-1/12+……+1/27-1/30+1/30-1/33)÷3

=(1/3-1/33)÷3

=10/33÷3

=10/99

1 tháng 5 2016

Ta có; F=1/3.6 +1 /6.9 + 1/9.12+......+1/30.33

         F=1.3/3.6.3 + 1.3/6.9.3+......+1.3/30.33.3

         F=1/3.(1/3 - 1/6 + 1/6 - 1/9 +...... +1/30 - 1/33)

         F=1/3.(1/3-1/33)

         F=1/3.10/33

        F=10/99

6 tháng 5 2018

a) \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(3F=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\)

\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)

\(3F=\frac{1}{3}-\frac{1}{33}\)

\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(F=\frac{1}{3}.\frac{1}{3}-\frac{1}{3}.\frac{1}{33}=\frac{1}{9}-\frac{1}{99}=\frac{11}{99}-\frac{1}{99}=\frac{10}{99}\)

b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(A=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)

\(A=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\left(\frac{7}{70}-\frac{1}{70}\right)=7.\frac{6}{70}\)

\(A=\frac{7.6}{70}=\frac{1.6}{10}=\frac{1.3}{5}=\frac{3}{5}\)

a, \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(F=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)

\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(F=\frac{1}{3}-\frac{10}{33}\)

\(F=\frac{10}{99}\)

12 tháng 2 2018

                                                 giải
1/18 + 1/54 +1/108 + ......+ 1/990
ta tách mẫu số ra thành 1 tích của 2 số :
1/3x6 + 1/6x9 + 1/9x12 +........ + 1/30x33
theo quy tắc ta có : nếu tử nhân với 3 thì mẩu cũng sẽ nhân với 3 :
1x3/3x6x3 +1x3/6x9x3 + 1x3/9x11x3 + .........+ 1x3/30x33x3
= 1/3 x  (  3/3x6 + 3/6x9 + 3/9x11 +.....+3/30x33
= 1/3 x ( 1/3 - 1/33 )
= 1/3 x 10/33
=10/99

9 tháng 6 2017

\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(F=\frac{1}{3}.\frac{10}{33}\)

\(F=\frac{10}{99}\)

9 tháng 6 2017

\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)

23 tháng 4 2015

Ta phân tích: 1/18=1/3x6;1/54=1/6x9;1/108=1/9x12;.........1/990=1/30x33, ta có Fx3=3/3x6+3/6x9+3/9x12+........+3/30x33=1/3-1/6+1/6-1/9+1/9-1/12+.............+1/30-1/33=1/3-1/33=10/33, suy ra F là: 10/33/3=10/99

6 tháng 4 2016

F=1/18+1/54+1/108+...+1/990                                                                                                                                                                   F=1/3.6 + 1/6.9 + 1/9.12 +...+ 1/30.33                                                                                                                                                       suy ra : 3F= 3/3.6 + 3/6.9 + 3/9.12 +...+3/30.33                                                                                                                                         3F= 3/3 - 3/6 + 3/6 - 3/9 + 3/9 - 3/12 +...+3/30 - 3/33                                                                                                                                 3F=1 - 3/33 = 33/33 - 3/33 = 30/33                                                                                                                                                           F= 30/33 : 3 = 30/33 . 1/3 =10/99